leonard-dls commited on
Commit
ce4ce43
·
1 Parent(s): d126096
Files changed (2) hide show
  1. __pycache__/app.cpython-310.pyc +0 -0
  2. app.py +12 -8
__pycache__/app.cpython-310.pyc CHANGED
Binary files a/__pycache__/app.cpython-310.pyc and b/__pycache__/app.cpython-310.pyc differ
 
app.py CHANGED
@@ -15,20 +15,23 @@ models_data = {
15
  "Qwen/Qwen2.5-14B" : qwen_dict,
16
  }
17
 
 
 
 
 
 
18
  starting_index = 0
19
  starting_model = [model_name for model_name in models_data.keys()][0]
20
 
21
 
22
- description_text = """
23
  This Space is inspired by [Luis Hunt's](https://www.linkedin.com/posts/louiswhunt_see-below-for-6882-pages-of-mmlu-and-gsm8k-activity-7281011488692047872-fWCE?utm_source=share&utm_medium=member_desktop) post.
24
  He highlights how current top performing models from major vendors are contaminated with benchmark data that is supposed to be used to assess their performance.
25
  This space aims to partially reproduce this work.
26
 
27
  I chose to look at the contamination of **Qwen/Qwen2.5-14B** and **microsoft/phi-4** by **GSM8K** dataset.
28
 
29
- For **microsoft/phi-4** I found **172** GSM8K examples that had a least a 0.9 text similarity ratio between generated and original.
30
- For **Qwen/Qwen2.5-14B** I found **729** GSM8K examples that had a least a 0.9 text similarity ratio between generated and original.
31
-
32
  """
33
 
34
 
@@ -70,14 +73,15 @@ def change_model(selected_model):
70
  example["original"],
71
  highlighted_output,
72
  example["similarity_ratio"],
73
- example["seed"]
 
74
  ]
75
  )
76
 
77
  with gr.Blocks() as demo:
78
  with gr.Row():
79
  with gr.Column(scale=1):
80
- gr.Markdown(description_text)
81
  with gr.Column(scale=1):
82
  pass
83
  with gr.Row():
@@ -123,7 +127,7 @@ with gr.Blocks() as demo:
123
  value=models_data[starting_model][starting_index]["seed"],
124
  )
125
 
126
- next_btn = gr.Button("Anoter example")
127
 
128
  next_btn.click(fn=next_example,
129
  inputs=[selected_model],
@@ -131,6 +135,6 @@ with gr.Blocks() as demo:
131
 
132
  selected_model.change(fn=change_model,
133
  inputs=[selected_model],
134
- outputs=[prompt, original, output, similarity, seed])
135
 
136
  demo.launch()
 
15
  "Qwen/Qwen2.5-14B" : qwen_dict,
16
  }
17
 
18
+ models_no = {
19
+ "microsoft/phi-4" : 172,
20
+ "Qwen/Qwen2.5-14B" : 729,
21
+ }
22
+
23
  starting_index = 0
24
  starting_model = [model_name for model_name in models_data.keys()][0]
25
 
26
 
27
+ description_template = """
28
  This Space is inspired by [Luis Hunt's](https://www.linkedin.com/posts/louiswhunt_see-below-for-6882-pages-of-mmlu-and-gsm8k-activity-7281011488692047872-fWCE?utm_source=share&utm_medium=member_desktop) post.
29
  He highlights how current top performing models from major vendors are contaminated with benchmark data that is supposed to be used to assess their performance.
30
  This space aims to partially reproduce this work.
31
 
32
  I chose to look at the contamination of **Qwen/Qwen2.5-14B** and **microsoft/phi-4** by **GSM8K** dataset.
33
 
34
+ For **{model_name}**, I found **{number}** GSM8K examples that had a least a 0.9 text similarity ratio between generated and original.
 
 
35
  """
36
 
37
 
 
73
  example["original"],
74
  highlighted_output,
75
  example["similarity_ratio"],
76
+ example["seed"],
77
+ description_template.format(model_name=selected_model, number=models_no[selected_model])
78
  ]
79
  )
80
 
81
  with gr.Blocks() as demo:
82
  with gr.Row():
83
  with gr.Column(scale=1):
84
+ description_text = gr.Markdown(description_template.format(model_name=starting_model, number=models_no[starting_model]))
85
  with gr.Column(scale=1):
86
  pass
87
  with gr.Row():
 
127
  value=models_data[starting_model][starting_index]["seed"],
128
  )
129
 
130
+ next_btn = gr.Button("Another")
131
 
132
  next_btn.click(fn=next_example,
133
  inputs=[selected_model],
 
135
 
136
  selected_model.change(fn=change_model,
137
  inputs=[selected_model],
138
+ outputs=[prompt, original, output, similarity, seed, description_text])
139
 
140
  demo.launch()