Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
import random
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from diffusers import StableDiffusionPipeline, AutoencoderKL
|
10 |
+
|
11 |
+
def gen_seed():
|
12 |
+
random_data = os.urandom(3)
|
13 |
+
seed = int.from_bytes(random_data, byteorder="big")
|
14 |
+
return seed
|
15 |
+
|
16 |
+
repo = "IDKiro/sdxs-512-0.9"
|
17 |
+
weight_type = torch.float32 # or float16
|
18 |
+
|
19 |
+
# Load model.
|
20 |
+
pipe = StableDiffusionPipeline.from_pretrained(repo, torch_dtype=weight_type)
|
21 |
+
|
22 |
+
# use original VAE
|
23 |
+
# pipe.vae = AutoencoderKL.from_pretrained("IDKiro/sdxs-512-0.9/vae_large")
|
24 |
+
|
25 |
+
#pipe.to("cuda")
|
26 |
+
|
27 |
+
prompt = "portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour"
|
28 |
+
|
29 |
+
def sdxs_run(prompt, steps, guidance, seed):
|
30 |
+
# Ensure using 1 inference step and CFG set to 0.
|
31 |
+
image = pipe(
|
32 |
+
prompt,
|
33 |
+
num_inference_steps=steps,
|
34 |
+
guidance_scale=guidance,
|
35 |
+
generator=torch.Generator(device="cpu").manual_seed(seed)
|
36 |
+
).images[0]
|
37 |
+
return image
|
38 |
+
|
39 |
+
#image.save("output.png")
|
40 |
+
|
41 |
+
def update_seed(rand, seed):
|
42 |
+
if rand:
|
43 |
+
return gen_seed()
|
44 |
+
else:
|
45 |
+
return seed
|
46 |
+
|
47 |
+
desc = """# SDXS CPU Test Space
|
48 |
+
Just a quick test. Model is `sdxs-512-0.9` for txt2img.
|
49 |
+
"""
|
50 |
+
|
51 |
+
with gr.Blocks() as demo:
|
52 |
+
gr.Markdown(desc)
|
53 |
+
with gr.Group():
|
54 |
+
with gr.Row():
|
55 |
+
img = gr.Image(label='SDXS Generated Image')
|
56 |
+
with gr.Row():
|
57 |
+
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8, value="portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour")
|
58 |
+
with gr.Accordion("More options", open=False):
|
59 |
+
steps = gr.Slider(label="Number of steps", value=1, minimum=1, maximum=20, step=1)
|
60 |
+
guidance = gr.Slider(label="Guidance", value=0, minimum=0, maximum=2, step=0.1)
|
61 |
+
seed = gr.Slider(label="Seed", minimum=20, maximum=100000000, step=1, randomize=True)
|
62 |
+
rand = gr.Checkbox(label="Randomize Seed After Generation?", value=True)
|
63 |
+
with gr.Row():
|
64 |
+
submit = gr.Button(scale=1, variant='primary')
|
65 |
+
#clear = gr.ClearButton(components=[])
|
66 |
+
submit.click(fn=sdxs_run, inputs=[prompt, steps, guidance, seed], outputs=img).then(fn=update_seed, inputs=[rand, seed], outputs=seed)
|
67 |
+
|
68 |
+
demo.queue(max_size=20).launch()
|