Spaces:
Running
Running
File size: 8,177 Bytes
8cb8054 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import torch
from transformers import StoppingCriteria, StoppingCriteriaList
from enums import PromptType, t5_type
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], stop_words=[], encounters=[], device="cuda", model_max_length=None, tokenizer=None):
super().__init__()
assert len(stops) % len(encounters) == 0, "Number of stops and encounters must match"
self.encounters = encounters
self.stops = [stop.to(device) for stop in stops]
self.stop_words = stop_words
self.num_stops = [0] * len(stops)
self.model_max_length = model_max_length
self.tokenizer = tokenizer
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
#if self.tokenizer:
# print('stop: %s' % self.tokenizer.decode(input_ids[0]), flush=True)
for stopi, (stop, stop_word) in enumerate(zip(self.stops, self.stop_words)):
current_block = input_ids[0][-len(stop):]
stop_text = self.tokenizer.decode(current_block)
len_new_tokens = current_block.shape[0]
#if len(stop) <= len_new_tokens and torch.all((stop == input_ids[0][-len(stop):])).item():
if len(stop) <= len_new_tokens and stop_word in stop_text:
self.num_stops[stopi] += 1
if self.num_stops[stopi] >= self.encounters[stopi % len(self.encounters)]:
# print("Stopped", flush=True)
return True
if self.model_max_length is not None and input_ids[0].shape[0] >= self.model_max_length:
# critical limit
return True
# print("Tokens: %s" % input_ids[0].cpu().numpy(), flush=True)
# print("Stop Tokens: %s" % [x.cpu().numpy() for x in self.stops], flush=True)
return False
def get_stopping(prompt_type, prompt_dict, tokenizer, device, base_model,
human='<human>:', bot="<bot>:", model_max_length=None,
prompter=None,
stop=None):
stop_words = []
encounters = []
# FIXME: prompt_dict unused currently
user_human_assistant_types = [PromptType.instruct_vicuna.value, str(PromptType.instruct_vicuna.value),
PromptType.instruct_vicuna.name] + \
[PromptType.guanaco.value, str(PromptType.guanaco.value),
PromptType.guanaco.name] + \
[PromptType.one_shot.value, str(PromptType.one_shot.value),
PromptType.one_shot.name] + \
[PromptType.instruct_vicuna2.value, str(PromptType.instruct_vicuna2.value),
PromptType.instruct_vicuna2.name] + \
[PromptType.instruct_vicuna3.value, str(PromptType.instruct_vicuna3.value),
PromptType.instruct_vicuna3.name] + \
[PromptType.instruct_with_end.value, str(PromptType.instruct_with_end.value),
PromptType.instruct_with_end.name]
human_bot_types = [PromptType.human_bot.value, str(PromptType.human_bot.value),
PromptType.human_bot.name] + \
[PromptType.human_bot_orig.value, str(PromptType.human_bot_orig.value),
PromptType.human_bot_orig.name]
all_types = user_human_assistant_types + human_bot_types
if prompt_type in all_types:
if prompt_type in human_bot_types:
# encounters = [prompt.count(human) + 1, prompt.count(bot) + 1]
# stopping only starts once output is beyond prompt
# 1 human is enough to trigger, but need 2 bots, because very first view back will be bot we added
stop_words = [human, bot, '\n' + human, '\n' + bot]
encounters = [1, 2]
elif prompt_type in user_human_assistant_types:
# even below is not enough, generic strings and many ways to encode
stop_words = [
'### Human:',
"""
### Human:""",
"""
### Human:
""",
"""### Human: """,
"""### Human:""",
'### Assistant:',
"""
### Assistant:""",
"""
### Assistant:
""",
"""### Assistant: """,
"""### Assistant:"""
]
if prompt_type in [PromptType.instruct_vicuna2.value, str(PromptType.instruct_vicuna2.value),
PromptType.instruct_vicuna2.name]:
stop_words = [x.upper() for x in stop_words]
if prompt_type in [PromptType.instruct_vicuna3.value, str(PromptType.instruct_vicuna3.value),
PromptType.instruct_vicuna3.name]:
stop_words = [x.replace('Human', 'User') for x in stop_words]
encounters = [1, 2]
else:
# some instruct prompts have this as end, doesn't hurt to stop on it since not common otherwise
stop_words = ['### End']
encounters = [1]
elif prompter and prompter.terminate_response:
stop_words = prompter.terminate_response
encounters = [1] * len(stop_words)
handle_newlines = [True] * len(stop_words)
# add other stop words too if passed, e.g. for LangChain agents
if stop:
stop_words += stop
encounters += [1] * len(stop)
handle_newlines += [False] * len(stop)
# get stop tokens
stop_words_ids = [
tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
# handle single token case
stop_words_ids = [x if len(x.shape) > 0 else torch.tensor([x]) for x in stop_words_ids]
stop_words_ids = [x for x in stop_words_ids if x.shape[0] > 0]
# avoid padding in front of tokens
if tokenizer._pad_token: # use hidden variable to avoid annoying properly logger bug
stop_words_ids = [x[1:] if x[0] == tokenizer.pad_token_id and len(x) > 1 else x for x in stop_words_ids]
if tokenizer._unk_token: # use hidden variable to avoid annoying properly logger bug
stop_words_ids = [x[1:] if x[0] == tokenizer.unk_token_id and len(x) > 1 else x for x in stop_words_ids]
stop_words_ids = [x[:-1] if x[-1] == tokenizer.unk_token_id and len(x) > 1 else x for x in stop_words_ids]
if tokenizer._eos_token: # use hidden variable to avoid annoying properly logger bug
stop_words_ids = [x[:-1] if x[-1] == tokenizer.eos_token_id and len(x) > 1 else x for x in stop_words_ids]
if tokenizer._bos_token: # use hidden variable to avoid annoying properly logger bug
stop_words_ids = [x[1:] if x[0] == tokenizer.bos_token_id and len(x) > 1 else x for x in stop_words_ids]
stop_words_ids = [x[:-1] if x[-1] == tokenizer.bos_token_id and len(x) > 1 else x for x in stop_words_ids]
if base_model and t5_type(base_model):
# T5 encoder converts internal double space to space+new line, so fix
for stopi, stop_word_id in enumerate(stop_words_ids):
start = stop_word_id[0:1]
mlist = stop_word_id[1:-1]
end = stop_word_id[-1:]
mlist = [tokenizer.vocab[' '] if x == tokenizer.vocab['\n'] else x for x in mlist]
stop_words_ids[stopi] = torch.tensor(list(start) + list(mlist) + list(end), device=stop_word_id.device)
# handle fake \n added
stop_words_ids = [x[1:] if y[0] == '\n' and handle_newline else x for x, y, handle_newline in
zip(stop_words_ids, stop_words, handle_newlines)]
if stop_words_ids:
# build stopper
stopping_criteria = StoppingCriteriaList(
[StoppingCriteriaSub(stops=stop_words_ids,
stop_words=stop_words,
encounters=encounters, device=device,
model_max_length=model_max_length, tokenizer=tokenizer)])
else:
# nothing to stop on
stopping_criteria = StoppingCriteriaList()
return stopping_criteria
|