Spaces:
Sleeping
Sleeping
File size: 3,072 Bytes
421412a b2e8f4f 6cbb7b3 b2e8f4f 421412a 05f8c48 b2e8f4f 1cc6275 b2e8f4f 421412a 1cc6275 b2e8f4f 421412a b2e8f4f 421412a b2e8f4f 98d724b 1cc6275 b2e8f4f 421412a b2e8f4f 1cc6275 b2e8f4f d011e52 b2e8f4f 1cc6275 b2e8f4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
import os
import gradio as gr
# Login to Hugging Face Hub
access_token = os.environ.get("HUGGING_FACE_HUB_TOKEN")
login(token=access_token)
# Define model details
peft_model_id = "kuyesu22/sunbird-ug-lang-v1.0-llama-2-7b-hf-lora" # Your fine-tuned Llama 2 model ID
config = PeftConfig.from_pretrained(peft_model_id)
# Load base model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
torch_dtype=torch.float16, # Mixed precision for faster inference
device_map="auto", # Automatically allocate to available devices
offload_folder="./offload" # Directory for offloading layers if needed
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Set the tokenizer's padding token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token # Set EOS token as padding if not already defined
# Load the LoRA fine-tuned model
model = PeftModel.from_pretrained(model, peft_model_id)
# Set model to evaluation mode
model.eval()
# Define the inference function for translation
def make_inference(english_text):
# Format the prompt based on the language pair
prompt = f"You are English Runyakole language translator, Runyakoleis a language spoke by the bantu speaking people in western Uganda. Can you appropriately translate these user sentences appropriate and must make sense. ### English:\n{english_text}\n\n### Runyankole:"
batch = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=256).to(model.device)
# Generate the translation
with torch.no_grad():
with torch.cuda.amp.autocast(): # Mixed precision inference for speed
output_tokens = model.generate(
input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
max_new_tokens=100,
do_sample=True,
temperature=0.7,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id
)
# Decode the generated tokens to obtain the translation
translated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
return translated_text
# Gradio Interface
def launch_gradio_interface():
inputs = gr.components.Textbox(lines=2, label="English Text") # Input text in English
outputs = gr.components.Textbox(label="Translated Runyankole Text") # Output in Runyankole
# Launch Gradio app with public sharing link enabled
gr.Interface(
fn=make_inference,
inputs=inputs,
outputs=outputs,
title="Dialogue of Delivery Translator",
description="Translate English to Runyankole using Llama 2 model fine-tuned with LoRA.",
).launch(share=True) # Set `share=True` to create a public link
# Entry point to run the Gradio app
if __name__ == "__main__":
launch_gradio_interface()
|