Spaces:
Runtime error
Runtime error
File size: 975 Bytes
43ddd05 b01556d 43ddd05 b01556d 43ddd05 736f47f 14fa378 114644e 4cec8ec b01556d 43ddd05 736f47f 14fa378 2d6752c e94f591 9e16be5 de7f225 43ddd05 4e2a9b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import gradio as gr
from huggingface_hub import from_pretrained_keras
import pandas as pd
import numpy as np
model = from_pretrained_keras("keras-io/timeseries_transformer_classification")
def detect_issue(file):
df = pd.read_csv(file,header=None)
preds = model.predict(df)
result = []
for i,pred in enumerate(preds):
result.append(['Sample ' + str(i+1), np.argmax(pred),pred[np.argmax(pred)]])
return pd.DataFrame(result,columns=['Sample','class','confidence'])
iface = gr.Interface(detect_issue,gr.inputs.File(label="csv file"),
"dataframe",
#outputs=[
# gr.outputs.Textbox(label="Engine issue"),
# gr.outputs.Textbox(label="Engine issue score")],
examples=["sample.csv","sample2.csv"], title="Classification of Ford Motor data",
description = "Model for predicting issues in Ford engines.",
article = "Author: <a href=\"https://huggingface.co./joheras\">Jónathan Heras</a>"
# examples = ["sample.csv"],
)
iface.launch()
|