def clasifica_imagen(inp): inp = inp.reshape((-1,224,224,3)) inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) prediction = inception_net.predict(inp).flatten() confidences ={etiquetas[i]: float(prediction[i]) for i in range(1000)} return confidences def audio_a_text(audio): text = trans(audio)['text'] return text def texto_a_sentimiento(text): return clasificador(text)[0]['label']