Spaces:
Running
Running
jhj0517
commited on
Commit
·
f7de005
1
Parent(s):
f5da61b
Apply i18n
Browse files
app.py
CHANGED
@@ -41,8 +41,8 @@ class App:
|
|
41 |
output_dir=os.path.join(self.args.output_dir, "translations")
|
42 |
)
|
43 |
self.default_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
44 |
-
print(f"Use \"{self.args.whisper_type}\" implementation"
|
45 |
-
|
46 |
|
47 |
def create_whisper_parameters(self):
|
48 |
whisper_params = self.default_params["whisper"]
|
@@ -52,23 +52,28 @@ class App:
|
|
52 |
|
53 |
with gr.Row():
|
54 |
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value=whisper_params["model_size"],
|
55 |
-
label="Model")
|
56 |
dd_lang = gr.Dropdown(choices=[AUTOMATIC_DETECTION] + self.whisper_inf.available_langs,
|
57 |
-
value=whisper_params["lang"]
|
58 |
-
|
|
|
59 |
with gr.Row():
|
60 |
-
cb_translate = gr.Checkbox(value=whisper_params["is_translate"], label="Translate to English?",
|
61 |
interactive=True)
|
62 |
with gr.Row():
|
63 |
-
cb_timestamp = gr.Checkbox(value=whisper_params["add_timestamp"],
|
|
|
64 |
interactive=True)
|
65 |
|
66 |
-
with gr.Accordion("Advanced Parameters", open=False):
|
67 |
-
nb_beam_size = gr.Number(label="Beam Size", value=whisper_params["beam_size"], precision=0,
|
|
|
68 |
info="Beam size to use for decoding.")
|
69 |
-
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold",
|
|
|
70 |
info="If the average log probability over sampled tokens is below this value, treat as failed.")
|
71 |
-
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=whisper_params["no_speech_threshold"],
|
|
|
72 |
info="If the no speech probability is higher than this value AND the average log probability over sampled tokens is below 'Log Prob Threshold', consider the segment as silent.")
|
73 |
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types,
|
74 |
value=self.whisper_inf.current_compute_type, interactive=True,
|
@@ -78,10 +83,12 @@ class App:
|
|
78 |
info="Number of candidates when sampling with non-zero temperature.")
|
79 |
nb_patience = gr.Number(label="Patience", value=whisper_params["patience"], interactive=True,
|
80 |
info="Beam search patience factor.")
|
81 |
-
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text",
|
|
|
82 |
interactive=True,
|
83 |
info="Condition on previous text during decoding.")
|
84 |
-
sld_prompt_reset_on_temperature = gr.Slider(label="Prompt Reset On Temperature",
|
|
|
85 |
minimum=0, maximum=1, step=0.01, interactive=True,
|
86 |
info="Resets prompt if temperature is above this value."
|
87 |
" Arg has effect only if 'Condition On Previous Text' is True.")
|
@@ -90,7 +97,8 @@ class App:
|
|
90 |
sd_temperature = gr.Slider(label="Temperature", value=whisper_params["temperature"], minimum=0.0,
|
91 |
step=0.01, maximum=1.0, interactive=True,
|
92 |
info="Temperature for sampling. It can be a tuple of temperatures, which will be successively used upon failures according to either `Compression Ratio Threshold` or `Log Prob Threshold`.")
|
93 |
-
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold",
|
|
|
94 |
interactive=True,
|
95 |
info="If the gzip compression ratio is above this value, treat as failed.")
|
96 |
nb_chunk_length = gr.Number(label="Chunk Length (s)", value=lambda: whisper_params["chunk_length"],
|
@@ -99,9 +107,11 @@ class App:
|
|
99 |
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
100 |
nb_length_penalty = gr.Number(label="Length Penalty", value=whisper_params["length_penalty"],
|
101 |
info="Exponential length penalty constant.")
|
102 |
-
nb_repetition_penalty = gr.Number(label="Repetition Penalty",
|
|
|
103 |
info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
|
104 |
-
nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size",
|
|
|
105 |
precision=0,
|
106 |
info="Prevent repetitions of n-grams with this size (set 0 to disable).")
|
107 |
tb_prefix = gr.Textbox(label="Prefix", value=lambda: whisper_params["prefix"],
|
@@ -110,48 +120,55 @@ class App:
|
|
110 |
info="Suppress blank outputs at the beginning of the sampling.")
|
111 |
tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value=whisper_params["suppress_tokens"],
|
112 |
info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
|
113 |
-
nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp",
|
|
|
114 |
info="The initial timestamp cannot be later than this.")
|
115 |
cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=whisper_params["word_timestamps"],
|
116 |
info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
|
117 |
-
tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations",
|
|
|
118 |
info="If 'Word Timestamps' is True, merge these punctuation symbols with the next word.")
|
119 |
-
tb_append_punctuations = gr.Textbox(label="Append Punctuations",
|
|
|
120 |
info="If 'Word Timestamps' is True, merge these punctuation symbols with the previous word.")
|
121 |
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=lambda: whisper_params["max_new_tokens"],
|
122 |
precision=0,
|
123 |
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
|
124 |
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold (sec)",
|
125 |
-
value=lambda: whisper_params[
|
|
|
126 |
info="When 'Word Timestamps' is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
|
127 |
tb_hotwords = gr.Textbox(label="Hotwords", value=lambda: whisper_params["hotwords"],
|
128 |
info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
|
129 |
-
nb_language_detection_threshold = gr.Number(label="Language Detection Threshold",
|
|
|
|
|
130 |
info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
|
131 |
-
nb_language_detection_segments = gr.Number(label="Language Detection Segments",
|
|
|
132 |
precision=0,
|
133 |
info="Number of segments to consider for the language detection.")
|
134 |
with gr.Group(visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
|
135 |
nb_batch_size = gr.Number(label="Batch Size", value=whisper_params["batch_size"], precision=0)
|
136 |
|
137 |
-
with gr.Accordion("Background Music Remover Filter", open=False):
|
138 |
-
cb_bgm_separation = gr.Checkbox(label="Enable Background Music Remover Filter",
|
|
|
139 |
interactive=True,
|
140 |
-
info="Enabling this will remove background music
|
141 |
-
|
142 |
-
dd_uvr_device = gr.Dropdown(label="Device", value=self.whisper_inf.music_separator.device,
|
143 |
choices=self.whisper_inf.music_separator.available_devices)
|
144 |
-
dd_uvr_model_size = gr.Dropdown(label="Model", value=uvr_params["model_size"],
|
145 |
choices=self.whisper_inf.music_separator.available_models)
|
146 |
nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0)
|
147 |
-
cb_uvr_save_file = gr.Checkbox(label="Save separated files to output", value=uvr_params["save_file"])
|
148 |
-
cb_uvr_enable_offload = gr.Checkbox(label="Offload sub model after removing background music",
|
149 |
value=uvr_params["enable_offload"])
|
150 |
|
151 |
-
with gr.Accordion("Voice Detection Filter", open=False):
|
152 |
-
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=vad_params["vad_filter"],
|
153 |
interactive=True,
|
154 |
-
info="Enable this to transcribe only detected voice
|
155 |
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
156 |
value=vad_params["threshold"],
|
157 |
info="Lower it to be more sensitive to small sounds.")
|
@@ -168,15 +185,11 @@ class App:
|
|
168 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=vad_params["speech_pad_ms"],
|
169 |
info="Final speech chunks are padded by this time each side")
|
170 |
|
171 |
-
with gr.Accordion("Diarization", open=False):
|
172 |
-
cb_diarize = gr.Checkbox(label="Enable Diarization", value=diarization_params["is_diarize"])
|
173 |
-
tb_hf_token = gr.Text(label="HuggingFace Token", value=diarization_params["hf_token"],
|
174 |
-
info="This is only needed the first time you download the model
|
175 |
-
|
176 |
-
"to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and "
|
177 |
-
"\"https://huggingface.co/pyannote/segmentation-3.0\" and agree to"
|
178 |
-
" their requirement.")
|
179 |
-
dd_diarization_device = gr.Dropdown(label="Device",
|
180 |
choices=self.whisper_inf.diarizer.get_available_device(),
|
181 |
value=self.whisper_inf.diarizer.get_device())
|
182 |
|
@@ -295,15 +308,19 @@ class App:
|
|
295 |
|
296 |
with gr.TabItem(_("T2T Translation")): # tab 4
|
297 |
with gr.Row():
|
298 |
-
file_subs = gr.Files(type="filepath", label="Upload Subtitle Files to translate here")
|
299 |
|
300 |
with gr.TabItem(_("DeepL API")): # sub tab1
|
301 |
with gr.Row():
|
302 |
-
tb_api_key = gr.Textbox(label=_("Your Auth Key (API KEY)"),
|
|
|
303 |
with gr.Row():
|
304 |
-
dd_source_lang = gr.Dropdown(label=_("Source Language"),
|
|
|
|
|
305 |
choices=list(self.deepl_api.available_source_langs.keys()))
|
306 |
-
dd_target_lang = gr.Dropdown(label=_("Target Language"),
|
|
|
307 |
choices=list(self.deepl_api.available_target_langs.keys()))
|
308 |
with gr.Row():
|
309 |
cb_is_pro = gr.Checkbox(label=_("Pro User?"), value=deepl_params["is_pro"])
|
@@ -323,17 +340,20 @@ class App:
|
|
323 |
cb_is_pro, cb_timestamp],
|
324 |
outputs=[tb_indicator, files_subtitles])
|
325 |
|
326 |
-
btn_openfolder.click(
|
327 |
-
|
328 |
-
|
|
|
329 |
|
330 |
with gr.TabItem(_("NLLB")): # sub tab2
|
331 |
with gr.Row():
|
332 |
dd_model_size = gr.Dropdown(label=_("Model"), value=nllb_params["model_size"],
|
333 |
choices=self.nllb_inf.available_models)
|
334 |
-
dd_source_lang = gr.Dropdown(label=_("Source Language"),
|
|
|
335 |
choices=self.nllb_inf.available_source_langs)
|
336 |
-
dd_target_lang = gr.Dropdown(label=_("Target Language"),
|
|
|
337 |
choices=self.nllb_inf.available_target_langs)
|
338 |
with gr.Row():
|
339 |
nb_max_length = gr.Number(label="Max Length Per Line", value=nllb_params["max_length"],
|
@@ -356,17 +376,19 @@ class App:
|
|
356 |
nb_max_length, cb_timestamp],
|
357 |
outputs=[tb_indicator, files_subtitles])
|
358 |
|
359 |
-
btn_openfolder.click(
|
360 |
-
|
361 |
-
|
|
|
362 |
|
363 |
with gr.TabItem(_("BGM Separation")):
|
364 |
-
files_audio = gr.Files(type="filepath", label="Upload Audio Files to separate background music")
|
365 |
dd_uvr_device = gr.Dropdown(label=_("Device"), value=self.whisper_inf.music_separator.device,
|
366 |
choices=self.whisper_inf.music_separator.available_devices)
|
367 |
dd_uvr_model_size = gr.Dropdown(label=_("Model"), value=uvr_params["model_size"],
|
368 |
choices=self.whisper_inf.music_separator.available_models)
|
369 |
-
nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"],
|
|
|
370 |
cb_uvr_save_file = gr.Checkbox(label=_("Save separated files to output"),
|
371 |
value=True, visible=False)
|
372 |
btn_run = gr.Button(_("SEPARATE BACKGROUND MUSIC"), variant="primary")
|
@@ -390,7 +412,7 @@ class App:
|
|
390 |
btn_open_vocals_folder.click(inputs=None,
|
391 |
outputs=None,
|
392 |
fn=lambda: self.open_folder(os.path.join(
|
393 |
-
|
394 |
)))
|
395 |
|
396 |
# Launch the app with optional gradio settings
|
@@ -424,10 +446,10 @@ class App:
|
|
424 |
return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True)
|
425 |
|
426 |
|
427 |
-
# Create the parser for command-line arguments
|
428 |
parser = argparse.ArgumentParser()
|
429 |
parser.add_argument('--whisper_type', type=str, default="faster-whisper",
|
430 |
-
|
|
|
431 |
parser.add_argument('--share', type=str2bool, default=False, nargs='?', const=True, help='Gradio share value')
|
432 |
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
|
433 |
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
|
@@ -436,8 +458,10 @@ parser.add_argument('--username', type=str, default=None, help='Gradio authentic
|
|
436 |
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
|
437 |
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
|
438 |
parser.add_argument('--colab', type=str2bool, default=False, nargs='?', const=True, help='Is colab user or not')
|
439 |
-
parser.add_argument('--api_open', type=str2bool, default=False, nargs='?', const=True,
|
440 |
-
|
|
|
|
|
441 |
parser.add_argument('--whisper_model_dir', type=str, default=WHISPER_MODELS_DIR,
|
442 |
help='Directory path of the whisper model')
|
443 |
parser.add_argument('--faster_whisper_model_dir', type=str, default=FASTER_WHISPER_MODELS_DIR,
|
|
|
41 |
output_dir=os.path.join(self.args.output_dir, "translations")
|
42 |
)
|
43 |
self.default_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
44 |
+
print(f"Use \"{self.args.whisper_type}\" implementation\n"
|
45 |
+
f"Device \"{self.whisper_inf.device}\" is detected")
|
46 |
|
47 |
def create_whisper_parameters(self):
|
48 |
whisper_params = self.default_params["whisper"]
|
|
|
52 |
|
53 |
with gr.Row():
|
54 |
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value=whisper_params["model_size"],
|
55 |
+
label=_("Model"))
|
56 |
dd_lang = gr.Dropdown(choices=[AUTOMATIC_DETECTION] + self.whisper_inf.available_langs,
|
57 |
+
value=AUTOMATIC_DETECTION if whisper_params["lang"] == AUTOMATIC_DETECTION.unwrap()
|
58 |
+
else whisper_params["lang"], label=_("Language"))
|
59 |
+
dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt"], value="SRT", label=_("File Format"))
|
60 |
with gr.Row():
|
61 |
+
cb_translate = gr.Checkbox(value=whisper_params["is_translate"], label=_("Translate to English?"),
|
62 |
interactive=True)
|
63 |
with gr.Row():
|
64 |
+
cb_timestamp = gr.Checkbox(value=whisper_params["add_timestamp"],
|
65 |
+
label=_("Add a timestamp to the end of the filename"),
|
66 |
interactive=True)
|
67 |
|
68 |
+
with gr.Accordion(_("Advanced Parameters"), open=False):
|
69 |
+
nb_beam_size = gr.Number(label="Beam Size", value=whisper_params["beam_size"], precision=0,
|
70 |
+
interactive=True,
|
71 |
info="Beam size to use for decoding.")
|
72 |
+
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold",
|
73 |
+
value=whisper_params["log_prob_threshold"], interactive=True,
|
74 |
info="If the average log probability over sampled tokens is below this value, treat as failed.")
|
75 |
+
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=whisper_params["no_speech_threshold"],
|
76 |
+
interactive=True,
|
77 |
info="If the no speech probability is higher than this value AND the average log probability over sampled tokens is below 'Log Prob Threshold', consider the segment as silent.")
|
78 |
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types,
|
79 |
value=self.whisper_inf.current_compute_type, interactive=True,
|
|
|
83 |
info="Number of candidates when sampling with non-zero temperature.")
|
84 |
nb_patience = gr.Number(label="Patience", value=whisper_params["patience"], interactive=True,
|
85 |
info="Beam search patience factor.")
|
86 |
+
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text",
|
87 |
+
value=whisper_params["condition_on_previous_text"],
|
88 |
interactive=True,
|
89 |
info="Condition on previous text during decoding.")
|
90 |
+
sld_prompt_reset_on_temperature = gr.Slider(label="Prompt Reset On Temperature",
|
91 |
+
value=whisper_params["prompt_reset_on_temperature"],
|
92 |
minimum=0, maximum=1, step=0.01, interactive=True,
|
93 |
info="Resets prompt if temperature is above this value."
|
94 |
" Arg has effect only if 'Condition On Previous Text' is True.")
|
|
|
97 |
sd_temperature = gr.Slider(label="Temperature", value=whisper_params["temperature"], minimum=0.0,
|
98 |
step=0.01, maximum=1.0, interactive=True,
|
99 |
info="Temperature for sampling. It can be a tuple of temperatures, which will be successively used upon failures according to either `Compression Ratio Threshold` or `Log Prob Threshold`.")
|
100 |
+
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold",
|
101 |
+
value=whisper_params["compression_ratio_threshold"],
|
102 |
interactive=True,
|
103 |
info="If the gzip compression ratio is above this value, treat as failed.")
|
104 |
nb_chunk_length = gr.Number(label="Chunk Length (s)", value=lambda: whisper_params["chunk_length"],
|
|
|
107 |
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
108 |
nb_length_penalty = gr.Number(label="Length Penalty", value=whisper_params["length_penalty"],
|
109 |
info="Exponential length penalty constant.")
|
110 |
+
nb_repetition_penalty = gr.Number(label="Repetition Penalty",
|
111 |
+
value=whisper_params["repetition_penalty"],
|
112 |
info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
|
113 |
+
nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size",
|
114 |
+
value=whisper_params["no_repeat_ngram_size"],
|
115 |
precision=0,
|
116 |
info="Prevent repetitions of n-grams with this size (set 0 to disable).")
|
117 |
tb_prefix = gr.Textbox(label="Prefix", value=lambda: whisper_params["prefix"],
|
|
|
120 |
info="Suppress blank outputs at the beginning of the sampling.")
|
121 |
tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value=whisper_params["suppress_tokens"],
|
122 |
info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
|
123 |
+
nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp",
|
124 |
+
value=whisper_params["max_initial_timestamp"],
|
125 |
info="The initial timestamp cannot be later than this.")
|
126 |
cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=whisper_params["word_timestamps"],
|
127 |
info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
|
128 |
+
tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations",
|
129 |
+
value=whisper_params["prepend_punctuations"],
|
130 |
info="If 'Word Timestamps' is True, merge these punctuation symbols with the next word.")
|
131 |
+
tb_append_punctuations = gr.Textbox(label="Append Punctuations",
|
132 |
+
value=whisper_params["append_punctuations"],
|
133 |
info="If 'Word Timestamps' is True, merge these punctuation symbols with the previous word.")
|
134 |
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=lambda: whisper_params["max_new_tokens"],
|
135 |
precision=0,
|
136 |
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
|
137 |
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold (sec)",
|
138 |
+
value=lambda: whisper_params[
|
139 |
+
"hallucination_silence_threshold"],
|
140 |
info="When 'Word Timestamps' is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
|
141 |
tb_hotwords = gr.Textbox(label="Hotwords", value=lambda: whisper_params["hotwords"],
|
142 |
info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
|
143 |
+
nb_language_detection_threshold = gr.Number(label="Language Detection Threshold",
|
144 |
+
value=lambda: whisper_params[
|
145 |
+
"language_detection_threshold"],
|
146 |
info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
|
147 |
+
nb_language_detection_segments = gr.Number(label="Language Detection Segments",
|
148 |
+
value=lambda: whisper_params["language_detection_segments"],
|
149 |
precision=0,
|
150 |
info="Number of segments to consider for the language detection.")
|
151 |
with gr.Group(visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
|
152 |
nb_batch_size = gr.Number(label="Batch Size", value=whisper_params["batch_size"], precision=0)
|
153 |
|
154 |
+
with gr.Accordion(_("Background Music Remover Filter"), open=False):
|
155 |
+
cb_bgm_separation = gr.Checkbox(label=_("Enable Background Music Remover Filter"),
|
156 |
+
value=uvr_params["is_separate_bgm"],
|
157 |
interactive=True,
|
158 |
+
info=_("Enabling this will remove background music"))
|
159 |
+
dd_uvr_device = gr.Dropdown(label=_("Device"), value=self.whisper_inf.music_separator.device,
|
|
|
160 |
choices=self.whisper_inf.music_separator.available_devices)
|
161 |
+
dd_uvr_model_size = gr.Dropdown(label=_("Model"), value=uvr_params["model_size"],
|
162 |
choices=self.whisper_inf.music_separator.available_models)
|
163 |
nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0)
|
164 |
+
cb_uvr_save_file = gr.Checkbox(label=_("Save separated files to output"), value=uvr_params["save_file"])
|
165 |
+
cb_uvr_enable_offload = gr.Checkbox(label=_("Offload sub model after removing background music"),
|
166 |
value=uvr_params["enable_offload"])
|
167 |
|
168 |
+
with gr.Accordion(_("Voice Detection Filter"), open=False):
|
169 |
+
cb_vad_filter = gr.Checkbox(label=_("Enable Silero VAD Filter"), value=vad_params["vad_filter"],
|
170 |
interactive=True,
|
171 |
+
info=_("Enable this to transcribe only detected voice"))
|
172 |
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
173 |
value=vad_params["threshold"],
|
174 |
info="Lower it to be more sensitive to small sounds.")
|
|
|
185 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=vad_params["speech_pad_ms"],
|
186 |
info="Final speech chunks are padded by this time each side")
|
187 |
|
188 |
+
with gr.Accordion(_("Diarization"), open=False):
|
189 |
+
cb_diarize = gr.Checkbox(label=_("Enable Diarization"), value=diarization_params["is_diarize"])
|
190 |
+
tb_hf_token = gr.Text(label=_("HuggingFace Token"), value=diarization_params["hf_token"],
|
191 |
+
info=_("This is only needed the first time you download the model"))
|
192 |
+
dd_diarization_device = gr.Dropdown(label=_("Device"),
|
|
|
|
|
|
|
|
|
193 |
choices=self.whisper_inf.diarizer.get_available_device(),
|
194 |
value=self.whisper_inf.diarizer.get_device())
|
195 |
|
|
|
308 |
|
309 |
with gr.TabItem(_("T2T Translation")): # tab 4
|
310 |
with gr.Row():
|
311 |
+
file_subs = gr.Files(type="filepath", label=_("Upload Subtitle Files to translate here"))
|
312 |
|
313 |
with gr.TabItem(_("DeepL API")): # sub tab1
|
314 |
with gr.Row():
|
315 |
+
tb_api_key = gr.Textbox(label=_("Your Auth Key (API KEY)"),
|
316 |
+
value=deepl_params["api_key"])
|
317 |
with gr.Row():
|
318 |
+
dd_source_lang = gr.Dropdown(label=_("Source Language"),
|
319 |
+
value=AUTOMATIC_DETECTION if deepl_params["source_lang"] == AUTOMATIC_DETECTION.unwrap()
|
320 |
+
else deepl_params["source_lang"],
|
321 |
choices=list(self.deepl_api.available_source_langs.keys()))
|
322 |
+
dd_target_lang = gr.Dropdown(label=_("Target Language"),
|
323 |
+
value=deepl_params["target_lang"],
|
324 |
choices=list(self.deepl_api.available_target_langs.keys()))
|
325 |
with gr.Row():
|
326 |
cb_is_pro = gr.Checkbox(label=_("Pro User?"), value=deepl_params["is_pro"])
|
|
|
340 |
cb_is_pro, cb_timestamp],
|
341 |
outputs=[tb_indicator, files_subtitles])
|
342 |
|
343 |
+
btn_openfolder.click(
|
344 |
+
fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
|
345 |
+
inputs=None,
|
346 |
+
outputs=None)
|
347 |
|
348 |
with gr.TabItem(_("NLLB")): # sub tab2
|
349 |
with gr.Row():
|
350 |
dd_model_size = gr.Dropdown(label=_("Model"), value=nllb_params["model_size"],
|
351 |
choices=self.nllb_inf.available_models)
|
352 |
+
dd_source_lang = gr.Dropdown(label=_("Source Language"),
|
353 |
+
value=nllb_params["source_lang"],
|
354 |
choices=self.nllb_inf.available_source_langs)
|
355 |
+
dd_target_lang = gr.Dropdown(label=_("Target Language"),
|
356 |
+
value=nllb_params["target_lang"],
|
357 |
choices=self.nllb_inf.available_target_langs)
|
358 |
with gr.Row():
|
359 |
nb_max_length = gr.Number(label="Max Length Per Line", value=nllb_params["max_length"],
|
|
|
376 |
nb_max_length, cb_timestamp],
|
377 |
outputs=[tb_indicator, files_subtitles])
|
378 |
|
379 |
+
btn_openfolder.click(
|
380 |
+
fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
|
381 |
+
inputs=None,
|
382 |
+
outputs=None)
|
383 |
|
384 |
with gr.TabItem(_("BGM Separation")):
|
385 |
+
files_audio = gr.Files(type="filepath", label=_("Upload Audio Files to separate background music"))
|
386 |
dd_uvr_device = gr.Dropdown(label=_("Device"), value=self.whisper_inf.music_separator.device,
|
387 |
choices=self.whisper_inf.music_separator.available_devices)
|
388 |
dd_uvr_model_size = gr.Dropdown(label=_("Model"), value=uvr_params["model_size"],
|
389 |
choices=self.whisper_inf.music_separator.available_models)
|
390 |
+
nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"],
|
391 |
+
precision=0)
|
392 |
cb_uvr_save_file = gr.Checkbox(label=_("Save separated files to output"),
|
393 |
value=True, visible=False)
|
394 |
btn_run = gr.Button(_("SEPARATE BACKGROUND MUSIC"), variant="primary")
|
|
|
412 |
btn_open_vocals_folder.click(inputs=None,
|
413 |
outputs=None,
|
414 |
fn=lambda: self.open_folder(os.path.join(
|
415 |
+
self.args.output_dir, "UVR", "vocals"
|
416 |
)))
|
417 |
|
418 |
# Launch the app with optional gradio settings
|
|
|
446 |
return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True)
|
447 |
|
448 |
|
|
|
449 |
parser = argparse.ArgumentParser()
|
450 |
parser.add_argument('--whisper_type', type=str, default="faster-whisper",
|
451 |
+
choices=["whisper", "faster-whisper", "insanely-fast-whisper"],
|
452 |
+
help='A type of the whisper implementation (Github repo name)')
|
453 |
parser.add_argument('--share', type=str2bool, default=False, nargs='?', const=True, help='Gradio share value')
|
454 |
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
|
455 |
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
|
|
|
458 |
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
|
459 |
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
|
460 |
parser.add_argument('--colab', type=str2bool, default=False, nargs='?', const=True, help='Is colab user or not')
|
461 |
+
parser.add_argument('--api_open', type=str2bool, default=False, nargs='?', const=True,
|
462 |
+
help='Enable api or not in Gradio')
|
463 |
+
parser.add_argument('--inbrowser', type=str2bool, default=True, nargs='?', const=True,
|
464 |
+
help='Whether to automatically start Gradio app or not')
|
465 |
parser.add_argument('--whisper_model_dir', type=str, default=WHISPER_MODELS_DIR,
|
466 |
help='Directory path of the whisper model')
|
467 |
parser.add_argument('--faster_whisper_model_dir', type=str, default=FASTER_WHISPER_MODELS_DIR,
|