jhj0517 commited on
Commit
f7de005
·
1 Parent(s): f5da61b

Apply i18n

Browse files
Files changed (1) hide show
  1. app.py +85 -61
app.py CHANGED
@@ -41,8 +41,8 @@ class App:
41
  output_dir=os.path.join(self.args.output_dir, "translations")
42
  )
43
  self.default_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
44
- print(f"Use \"{self.args.whisper_type}\" implementation")
45
- print(f"Device \"{self.whisper_inf.device}\" is detected")
46
 
47
  def create_whisper_parameters(self):
48
  whisper_params = self.default_params["whisper"]
@@ -52,23 +52,28 @@ class App:
52
 
53
  with gr.Row():
54
  dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value=whisper_params["model_size"],
55
- label="Model")
56
  dd_lang = gr.Dropdown(choices=[AUTOMATIC_DETECTION] + self.whisper_inf.available_langs,
57
- value=whisper_params["lang"], label="Language")
58
- dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
 
59
  with gr.Row():
60
- cb_translate = gr.Checkbox(value=whisper_params["is_translate"], label="Translate to English?",
61
  interactive=True)
62
  with gr.Row():
63
- cb_timestamp = gr.Checkbox(value=whisper_params["add_timestamp"], label="Add a timestamp to the end of the filename",
 
64
  interactive=True)
65
 
66
- with gr.Accordion("Advanced Parameters", open=False):
67
- nb_beam_size = gr.Number(label="Beam Size", value=whisper_params["beam_size"], precision=0, interactive=True,
 
68
  info="Beam size to use for decoding.")
69
- nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=whisper_params["log_prob_threshold"], interactive=True,
 
70
  info="If the average log probability over sampled tokens is below this value, treat as failed.")
71
- nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=whisper_params["no_speech_threshold"], interactive=True,
 
72
  info="If the no speech probability is higher than this value AND the average log probability over sampled tokens is below 'Log Prob Threshold', consider the segment as silent.")
73
  dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types,
74
  value=self.whisper_inf.current_compute_type, interactive=True,
@@ -78,10 +83,12 @@ class App:
78
  info="Number of candidates when sampling with non-zero temperature.")
79
  nb_patience = gr.Number(label="Patience", value=whisper_params["patience"], interactive=True,
80
  info="Beam search patience factor.")
81
- cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=whisper_params["condition_on_previous_text"],
 
82
  interactive=True,
83
  info="Condition on previous text during decoding.")
84
- sld_prompt_reset_on_temperature = gr.Slider(label="Prompt Reset On Temperature", value=whisper_params["prompt_reset_on_temperature"],
 
85
  minimum=0, maximum=1, step=0.01, interactive=True,
86
  info="Resets prompt if temperature is above this value."
87
  " Arg has effect only if 'Condition On Previous Text' is True.")
@@ -90,7 +97,8 @@ class App:
90
  sd_temperature = gr.Slider(label="Temperature", value=whisper_params["temperature"], minimum=0.0,
91
  step=0.01, maximum=1.0, interactive=True,
92
  info="Temperature for sampling. It can be a tuple of temperatures, which will be successively used upon failures according to either `Compression Ratio Threshold` or `Log Prob Threshold`.")
93
- nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=whisper_params["compression_ratio_threshold"],
 
94
  interactive=True,
95
  info="If the gzip compression ratio is above this value, treat as failed.")
96
  nb_chunk_length = gr.Number(label="Chunk Length (s)", value=lambda: whisper_params["chunk_length"],
@@ -99,9 +107,11 @@ class App:
99
  with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
100
  nb_length_penalty = gr.Number(label="Length Penalty", value=whisper_params["length_penalty"],
101
  info="Exponential length penalty constant.")
102
- nb_repetition_penalty = gr.Number(label="Repetition Penalty", value=whisper_params["repetition_penalty"],
 
103
  info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
104
- nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size", value=whisper_params["no_repeat_ngram_size"],
 
105
  precision=0,
106
  info="Prevent repetitions of n-grams with this size (set 0 to disable).")
107
  tb_prefix = gr.Textbox(label="Prefix", value=lambda: whisper_params["prefix"],
@@ -110,48 +120,55 @@ class App:
110
  info="Suppress blank outputs at the beginning of the sampling.")
111
  tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value=whisper_params["suppress_tokens"],
112
  info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
113
- nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp", value=whisper_params["max_initial_timestamp"],
 
114
  info="The initial timestamp cannot be later than this.")
115
  cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=whisper_params["word_timestamps"],
116
  info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
117
- tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations", value=whisper_params["prepend_punctuations"],
 
118
  info="If 'Word Timestamps' is True, merge these punctuation symbols with the next word.")
119
- tb_append_punctuations = gr.Textbox(label="Append Punctuations", value=whisper_params["append_punctuations"],
 
120
  info="If 'Word Timestamps' is True, merge these punctuation symbols with the previous word.")
121
  nb_max_new_tokens = gr.Number(label="Max New Tokens", value=lambda: whisper_params["max_new_tokens"],
122
  precision=0,
123
  info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
124
  nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold (sec)",
125
- value=lambda: whisper_params["hallucination_silence_threshold"],
 
126
  info="When 'Word Timestamps' is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
127
  tb_hotwords = gr.Textbox(label="Hotwords", value=lambda: whisper_params["hotwords"],
128
  info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
129
- nb_language_detection_threshold = gr.Number(label="Language Detection Threshold", value=lambda: whisper_params["language_detection_threshold"],
 
 
130
  info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
131
- nb_language_detection_segments = gr.Number(label="Language Detection Segments", value=lambda: whisper_params["language_detection_segments"],
 
132
  precision=0,
133
  info="Number of segments to consider for the language detection.")
134
  with gr.Group(visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
135
  nb_batch_size = gr.Number(label="Batch Size", value=whisper_params["batch_size"], precision=0)
136
 
137
- with gr.Accordion("Background Music Remover Filter", open=False):
138
- cb_bgm_separation = gr.Checkbox(label="Enable Background Music Remover Filter", value=uvr_params["is_separate_bgm"],
 
139
  interactive=True,
140
- info="Enabling this will remove background music by submodel before"
141
- " transcribing ")
142
- dd_uvr_device = gr.Dropdown(label="Device", value=self.whisper_inf.music_separator.device,
143
  choices=self.whisper_inf.music_separator.available_devices)
144
- dd_uvr_model_size = gr.Dropdown(label="Model", value=uvr_params["model_size"],
145
  choices=self.whisper_inf.music_separator.available_models)
146
  nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0)
147
- cb_uvr_save_file = gr.Checkbox(label="Save separated files to output", value=uvr_params["save_file"])
148
- cb_uvr_enable_offload = gr.Checkbox(label="Offload sub model after removing background music",
149
  value=uvr_params["enable_offload"])
150
 
151
- with gr.Accordion("Voice Detection Filter", open=False):
152
- cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=vad_params["vad_filter"],
153
  interactive=True,
154
- info="Enable this to transcribe only detected voice parts by submodel.")
155
  sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
156
  value=vad_params["threshold"],
157
  info="Lower it to be more sensitive to small sounds.")
@@ -168,15 +185,11 @@ class App:
168
  nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=vad_params["speech_pad_ms"],
169
  info="Final speech chunks are padded by this time each side")
170
 
171
- with gr.Accordion("Diarization", open=False):
172
- cb_diarize = gr.Checkbox(label="Enable Diarization", value=diarization_params["is_diarize"])
173
- tb_hf_token = gr.Text(label="HuggingFace Token", value=diarization_params["hf_token"],
174
- info="This is only needed the first time you download the model. If you already have"
175
- " models, you don't need to enter. To download the model, you must manually go "
176
- "to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and "
177
- "\"https://huggingface.co/pyannote/segmentation-3.0\" and agree to"
178
- " their requirement.")
179
- dd_diarization_device = gr.Dropdown(label="Device",
180
  choices=self.whisper_inf.diarizer.get_available_device(),
181
  value=self.whisper_inf.diarizer.get_device())
182
 
@@ -295,15 +308,19 @@ class App:
295
 
296
  with gr.TabItem(_("T2T Translation")): # tab 4
297
  with gr.Row():
298
- file_subs = gr.Files(type="filepath", label="Upload Subtitle Files to translate here")
299
 
300
  with gr.TabItem(_("DeepL API")): # sub tab1
301
  with gr.Row():
302
- tb_api_key = gr.Textbox(label=_("Your Auth Key (API KEY)"), value=deepl_params["api_key"])
 
303
  with gr.Row():
304
- dd_source_lang = gr.Dropdown(label=_("Source Language"), value=deepl_params["source_lang"],
 
 
305
  choices=list(self.deepl_api.available_source_langs.keys()))
306
- dd_target_lang = gr.Dropdown(label=_("Target Language"), value=deepl_params["target_lang"],
 
307
  choices=list(self.deepl_api.available_target_langs.keys()))
308
  with gr.Row():
309
  cb_is_pro = gr.Checkbox(label=_("Pro User?"), value=deepl_params["is_pro"])
@@ -323,17 +340,20 @@ class App:
323
  cb_is_pro, cb_timestamp],
324
  outputs=[tb_indicator, files_subtitles])
325
 
326
- btn_openfolder.click(fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
327
- inputs=None,
328
- outputs=None)
 
329
 
330
  with gr.TabItem(_("NLLB")): # sub tab2
331
  with gr.Row():
332
  dd_model_size = gr.Dropdown(label=_("Model"), value=nllb_params["model_size"],
333
  choices=self.nllb_inf.available_models)
334
- dd_source_lang = gr.Dropdown(label=_("Source Language"), value=nllb_params["source_lang"],
 
335
  choices=self.nllb_inf.available_source_langs)
336
- dd_target_lang = gr.Dropdown(label=_("Target Language"), value=nllb_params["target_lang"],
 
337
  choices=self.nllb_inf.available_target_langs)
338
  with gr.Row():
339
  nb_max_length = gr.Number(label="Max Length Per Line", value=nllb_params["max_length"],
@@ -356,17 +376,19 @@ class App:
356
  nb_max_length, cb_timestamp],
357
  outputs=[tb_indicator, files_subtitles])
358
 
359
- btn_openfolder.click(fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
360
- inputs=None,
361
- outputs=None)
 
362
 
363
  with gr.TabItem(_("BGM Separation")):
364
- files_audio = gr.Files(type="filepath", label="Upload Audio Files to separate background music")
365
  dd_uvr_device = gr.Dropdown(label=_("Device"), value=self.whisper_inf.music_separator.device,
366
  choices=self.whisper_inf.music_separator.available_devices)
367
  dd_uvr_model_size = gr.Dropdown(label=_("Model"), value=uvr_params["model_size"],
368
  choices=self.whisper_inf.music_separator.available_models)
369
- nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0)
 
370
  cb_uvr_save_file = gr.Checkbox(label=_("Save separated files to output"),
371
  value=True, visible=False)
372
  btn_run = gr.Button(_("SEPARATE BACKGROUND MUSIC"), variant="primary")
@@ -390,7 +412,7 @@ class App:
390
  btn_open_vocals_folder.click(inputs=None,
391
  outputs=None,
392
  fn=lambda: self.open_folder(os.path.join(
393
- self.args.output_dir, "UVR", "vocals"
394
  )))
395
 
396
  # Launch the app with optional gradio settings
@@ -424,10 +446,10 @@ class App:
424
  return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True)
425
 
426
 
427
- # Create the parser for command-line arguments
428
  parser = argparse.ArgumentParser()
429
  parser.add_argument('--whisper_type', type=str, default="faster-whisper",
430
- help='A type of the whisper implementation between: ["whisper", "faster-whisper", "insanely-fast-whisper"]')
 
431
  parser.add_argument('--share', type=str2bool, default=False, nargs='?', const=True, help='Gradio share value')
432
  parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
433
  parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
@@ -436,8 +458,10 @@ parser.add_argument('--username', type=str, default=None, help='Gradio authentic
436
  parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
437
  parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
438
  parser.add_argument('--colab', type=str2bool, default=False, nargs='?', const=True, help='Is colab user or not')
439
- parser.add_argument('--api_open', type=str2bool, default=False, nargs='?', const=True, help='Enable api or not in Gradio')
440
- parser.add_argument('--inbrowser', type=str2bool, default=True, nargs='?', const=True, help='Whether to automatically start Gradio app or not')
 
 
441
  parser.add_argument('--whisper_model_dir', type=str, default=WHISPER_MODELS_DIR,
442
  help='Directory path of the whisper model')
443
  parser.add_argument('--faster_whisper_model_dir', type=str, default=FASTER_WHISPER_MODELS_DIR,
 
41
  output_dir=os.path.join(self.args.output_dir, "translations")
42
  )
43
  self.default_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
44
+ print(f"Use \"{self.args.whisper_type}\" implementation\n"
45
+ f"Device \"{self.whisper_inf.device}\" is detected")
46
 
47
  def create_whisper_parameters(self):
48
  whisper_params = self.default_params["whisper"]
 
52
 
53
  with gr.Row():
54
  dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value=whisper_params["model_size"],
55
+ label=_("Model"))
56
  dd_lang = gr.Dropdown(choices=[AUTOMATIC_DETECTION] + self.whisper_inf.available_langs,
57
+ value=AUTOMATIC_DETECTION if whisper_params["lang"] == AUTOMATIC_DETECTION.unwrap()
58
+ else whisper_params["lang"], label=_("Language"))
59
+ dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt"], value="SRT", label=_("File Format"))
60
  with gr.Row():
61
+ cb_translate = gr.Checkbox(value=whisper_params["is_translate"], label=_("Translate to English?"),
62
  interactive=True)
63
  with gr.Row():
64
+ cb_timestamp = gr.Checkbox(value=whisper_params["add_timestamp"],
65
+ label=_("Add a timestamp to the end of the filename"),
66
  interactive=True)
67
 
68
+ with gr.Accordion(_("Advanced Parameters"), open=False):
69
+ nb_beam_size = gr.Number(label="Beam Size", value=whisper_params["beam_size"], precision=0,
70
+ interactive=True,
71
  info="Beam size to use for decoding.")
72
+ nb_log_prob_threshold = gr.Number(label="Log Probability Threshold",
73
+ value=whisper_params["log_prob_threshold"], interactive=True,
74
  info="If the average log probability over sampled tokens is below this value, treat as failed.")
75
+ nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=whisper_params["no_speech_threshold"],
76
+ interactive=True,
77
  info="If the no speech probability is higher than this value AND the average log probability over sampled tokens is below 'Log Prob Threshold', consider the segment as silent.")
78
  dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types,
79
  value=self.whisper_inf.current_compute_type, interactive=True,
 
83
  info="Number of candidates when sampling with non-zero temperature.")
84
  nb_patience = gr.Number(label="Patience", value=whisper_params["patience"], interactive=True,
85
  info="Beam search patience factor.")
86
+ cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text",
87
+ value=whisper_params["condition_on_previous_text"],
88
  interactive=True,
89
  info="Condition on previous text during decoding.")
90
+ sld_prompt_reset_on_temperature = gr.Slider(label="Prompt Reset On Temperature",
91
+ value=whisper_params["prompt_reset_on_temperature"],
92
  minimum=0, maximum=1, step=0.01, interactive=True,
93
  info="Resets prompt if temperature is above this value."
94
  " Arg has effect only if 'Condition On Previous Text' is True.")
 
97
  sd_temperature = gr.Slider(label="Temperature", value=whisper_params["temperature"], minimum=0.0,
98
  step=0.01, maximum=1.0, interactive=True,
99
  info="Temperature for sampling. It can be a tuple of temperatures, which will be successively used upon failures according to either `Compression Ratio Threshold` or `Log Prob Threshold`.")
100
+ nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold",
101
+ value=whisper_params["compression_ratio_threshold"],
102
  interactive=True,
103
  info="If the gzip compression ratio is above this value, treat as failed.")
104
  nb_chunk_length = gr.Number(label="Chunk Length (s)", value=lambda: whisper_params["chunk_length"],
 
107
  with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
108
  nb_length_penalty = gr.Number(label="Length Penalty", value=whisper_params["length_penalty"],
109
  info="Exponential length penalty constant.")
110
+ nb_repetition_penalty = gr.Number(label="Repetition Penalty",
111
+ value=whisper_params["repetition_penalty"],
112
  info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
113
+ nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size",
114
+ value=whisper_params["no_repeat_ngram_size"],
115
  precision=0,
116
  info="Prevent repetitions of n-grams with this size (set 0 to disable).")
117
  tb_prefix = gr.Textbox(label="Prefix", value=lambda: whisper_params["prefix"],
 
120
  info="Suppress blank outputs at the beginning of the sampling.")
121
  tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value=whisper_params["suppress_tokens"],
122
  info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
123
+ nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp",
124
+ value=whisper_params["max_initial_timestamp"],
125
  info="The initial timestamp cannot be later than this.")
126
  cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=whisper_params["word_timestamps"],
127
  info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
128
+ tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations",
129
+ value=whisper_params["prepend_punctuations"],
130
  info="If 'Word Timestamps' is True, merge these punctuation symbols with the next word.")
131
+ tb_append_punctuations = gr.Textbox(label="Append Punctuations",
132
+ value=whisper_params["append_punctuations"],
133
  info="If 'Word Timestamps' is True, merge these punctuation symbols with the previous word.")
134
  nb_max_new_tokens = gr.Number(label="Max New Tokens", value=lambda: whisper_params["max_new_tokens"],
135
  precision=0,
136
  info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
137
  nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold (sec)",
138
+ value=lambda: whisper_params[
139
+ "hallucination_silence_threshold"],
140
  info="When 'Word Timestamps' is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
141
  tb_hotwords = gr.Textbox(label="Hotwords", value=lambda: whisper_params["hotwords"],
142
  info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
143
+ nb_language_detection_threshold = gr.Number(label="Language Detection Threshold",
144
+ value=lambda: whisper_params[
145
+ "language_detection_threshold"],
146
  info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
147
+ nb_language_detection_segments = gr.Number(label="Language Detection Segments",
148
+ value=lambda: whisper_params["language_detection_segments"],
149
  precision=0,
150
  info="Number of segments to consider for the language detection.")
151
  with gr.Group(visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
152
  nb_batch_size = gr.Number(label="Batch Size", value=whisper_params["batch_size"], precision=0)
153
 
154
+ with gr.Accordion(_("Background Music Remover Filter"), open=False):
155
+ cb_bgm_separation = gr.Checkbox(label=_("Enable Background Music Remover Filter"),
156
+ value=uvr_params["is_separate_bgm"],
157
  interactive=True,
158
+ info=_("Enabling this will remove background music"))
159
+ dd_uvr_device = gr.Dropdown(label=_("Device"), value=self.whisper_inf.music_separator.device,
 
160
  choices=self.whisper_inf.music_separator.available_devices)
161
+ dd_uvr_model_size = gr.Dropdown(label=_("Model"), value=uvr_params["model_size"],
162
  choices=self.whisper_inf.music_separator.available_models)
163
  nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0)
164
+ cb_uvr_save_file = gr.Checkbox(label=_("Save separated files to output"), value=uvr_params["save_file"])
165
+ cb_uvr_enable_offload = gr.Checkbox(label=_("Offload sub model after removing background music"),
166
  value=uvr_params["enable_offload"])
167
 
168
+ with gr.Accordion(_("Voice Detection Filter"), open=False):
169
+ cb_vad_filter = gr.Checkbox(label=_("Enable Silero VAD Filter"), value=vad_params["vad_filter"],
170
  interactive=True,
171
+ info=_("Enable this to transcribe only detected voice"))
172
  sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
173
  value=vad_params["threshold"],
174
  info="Lower it to be more sensitive to small sounds.")
 
185
  nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=vad_params["speech_pad_ms"],
186
  info="Final speech chunks are padded by this time each side")
187
 
188
+ with gr.Accordion(_("Diarization"), open=False):
189
+ cb_diarize = gr.Checkbox(label=_("Enable Diarization"), value=diarization_params["is_diarize"])
190
+ tb_hf_token = gr.Text(label=_("HuggingFace Token"), value=diarization_params["hf_token"],
191
+ info=_("This is only needed the first time you download the model"))
192
+ dd_diarization_device = gr.Dropdown(label=_("Device"),
 
 
 
 
193
  choices=self.whisper_inf.diarizer.get_available_device(),
194
  value=self.whisper_inf.diarizer.get_device())
195
 
 
308
 
309
  with gr.TabItem(_("T2T Translation")): # tab 4
310
  with gr.Row():
311
+ file_subs = gr.Files(type="filepath", label=_("Upload Subtitle Files to translate here"))
312
 
313
  with gr.TabItem(_("DeepL API")): # sub tab1
314
  with gr.Row():
315
+ tb_api_key = gr.Textbox(label=_("Your Auth Key (API KEY)"),
316
+ value=deepl_params["api_key"])
317
  with gr.Row():
318
+ dd_source_lang = gr.Dropdown(label=_("Source Language"),
319
+ value=AUTOMATIC_DETECTION if deepl_params["source_lang"] == AUTOMATIC_DETECTION.unwrap()
320
+ else deepl_params["source_lang"],
321
  choices=list(self.deepl_api.available_source_langs.keys()))
322
+ dd_target_lang = gr.Dropdown(label=_("Target Language"),
323
+ value=deepl_params["target_lang"],
324
  choices=list(self.deepl_api.available_target_langs.keys()))
325
  with gr.Row():
326
  cb_is_pro = gr.Checkbox(label=_("Pro User?"), value=deepl_params["is_pro"])
 
340
  cb_is_pro, cb_timestamp],
341
  outputs=[tb_indicator, files_subtitles])
342
 
343
+ btn_openfolder.click(
344
+ fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
345
+ inputs=None,
346
+ outputs=None)
347
 
348
  with gr.TabItem(_("NLLB")): # sub tab2
349
  with gr.Row():
350
  dd_model_size = gr.Dropdown(label=_("Model"), value=nllb_params["model_size"],
351
  choices=self.nllb_inf.available_models)
352
+ dd_source_lang = gr.Dropdown(label=_("Source Language"),
353
+ value=nllb_params["source_lang"],
354
  choices=self.nllb_inf.available_source_langs)
355
+ dd_target_lang = gr.Dropdown(label=_("Target Language"),
356
+ value=nllb_params["target_lang"],
357
  choices=self.nllb_inf.available_target_langs)
358
  with gr.Row():
359
  nb_max_length = gr.Number(label="Max Length Per Line", value=nllb_params["max_length"],
 
376
  nb_max_length, cb_timestamp],
377
  outputs=[tb_indicator, files_subtitles])
378
 
379
+ btn_openfolder.click(
380
+ fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
381
+ inputs=None,
382
+ outputs=None)
383
 
384
  with gr.TabItem(_("BGM Separation")):
385
+ files_audio = gr.Files(type="filepath", label=_("Upload Audio Files to separate background music"))
386
  dd_uvr_device = gr.Dropdown(label=_("Device"), value=self.whisper_inf.music_separator.device,
387
  choices=self.whisper_inf.music_separator.available_devices)
388
  dd_uvr_model_size = gr.Dropdown(label=_("Model"), value=uvr_params["model_size"],
389
  choices=self.whisper_inf.music_separator.available_models)
390
+ nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"],
391
+ precision=0)
392
  cb_uvr_save_file = gr.Checkbox(label=_("Save separated files to output"),
393
  value=True, visible=False)
394
  btn_run = gr.Button(_("SEPARATE BACKGROUND MUSIC"), variant="primary")
 
412
  btn_open_vocals_folder.click(inputs=None,
413
  outputs=None,
414
  fn=lambda: self.open_folder(os.path.join(
415
+ self.args.output_dir, "UVR", "vocals"
416
  )))
417
 
418
  # Launch the app with optional gradio settings
 
446
  return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True)
447
 
448
 
 
449
  parser = argparse.ArgumentParser()
450
  parser.add_argument('--whisper_type', type=str, default="faster-whisper",
451
+ choices=["whisper", "faster-whisper", "insanely-fast-whisper"],
452
+ help='A type of the whisper implementation (Github repo name)')
453
  parser.add_argument('--share', type=str2bool, default=False, nargs='?', const=True, help='Gradio share value')
454
  parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
455
  parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
 
458
  parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
459
  parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
460
  parser.add_argument('--colab', type=str2bool, default=False, nargs='?', const=True, help='Is colab user or not')
461
+ parser.add_argument('--api_open', type=str2bool, default=False, nargs='?', const=True,
462
+ help='Enable api or not in Gradio')
463
+ parser.add_argument('--inbrowser', type=str2bool, default=True, nargs='?', const=True,
464
+ help='Whether to automatically start Gradio app or not')
465
  parser.add_argument('--whisper_model_dir', type=str, default=WHISPER_MODELS_DIR,
466
  help='Directory path of the whisper model')
467
  parser.add_argument('--faster_whisper_model_dir', type=str, default=FASTER_WHISPER_MODELS_DIR,