Spaces:
Running
Running
jhj0517
commited on
Commit
·
a85ea1b
1
Parent(s):
19ab4f1
add gradio components
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
import argparse
|
|
|
3 |
|
4 |
from modules.whisper.whisper_Inference import WhisperInference
|
5 |
from modules.whisper.faster_whisper_inference import FasterWhisperInference
|
@@ -84,7 +85,7 @@ class App:
|
|
84 |
with gr.Column():
|
85 |
input_file = gr.Files(type="filepath", label="Upload File here")
|
86 |
tb_input_folder = gr.Textbox(label="Input Folder Path (Optional)",
|
87 |
-
info="Optional: Specify the folder path where the input files are located, if you prefer to use local files instead of uploading them."
|
88 |
" Leave this field empty if you do not wish to use a local path.",
|
89 |
visible=self.args.colab,
|
90 |
value="")
|
@@ -97,32 +98,83 @@ class App:
|
|
97 |
with gr.Row():
|
98 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
99 |
with gr.Row():
|
100 |
-
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
|
|
|
101 |
with gr.Accordion("Advanced Parameters", open=False):
|
102 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
103 |
-
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0,
|
|
|
104 |
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
105 |
-
dd_compute_type = gr.Dropdown(label="Compute Type",
|
|
|
|
|
106 |
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
|
107 |
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
|
108 |
-
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True,
|
|
|
109 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
110 |
-
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0,
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
with gr.Accordion("VAD", open=False):
|
113 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
114 |
-
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
115 |
-
|
|
|
|
|
116 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
117 |
-
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
|
|
|
118 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
119 |
with gr.Accordion("Diarization", open=False):
|
120 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
121 |
tb_hf_token = gr.Text(label="HuggingFace Token", value="",
|
122 |
info="This is only needed the first time you download the model. If you already have models, you don't need to enter. "
|
123 |
-
|
124 |
-
dd_diarization_device = gr.Dropdown(label="Device",
|
125 |
-
|
|
|
|
|
|
|
126 |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
127 |
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
|
128 |
with gr.Row():
|
@@ -133,30 +185,48 @@ class App:
|
|
133 |
btn_openfolder = gr.Button('📂', scale=1)
|
134 |
|
135 |
params = [input_file, tb_input_folder, dd_file_format, cb_timestamp]
|
136 |
-
whisper_params = WhisperParameters(
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
btn_run.click(fn=self.whisper_inf.transcribe_file,
|
162 |
inputs=params + whisper_params.as_list(),
|
@@ -186,28 +256,77 @@ class App:
|
|
186 |
interactive=True)
|
187 |
with gr.Accordion("Advanced Parameters", open=False):
|
188 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
189 |
-
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0,
|
|
|
190 |
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
191 |
-
dd_compute_type = gr.Dropdown(label="Compute Type",
|
|
|
|
|
192 |
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
|
193 |
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
|
194 |
-
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True,
|
|
|
195 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
196 |
-
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0,
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
with gr.Accordion("VAD", open=False):
|
199 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
200 |
-
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
201 |
-
|
|
|
|
|
202 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
203 |
-
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
|
|
|
204 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
205 |
with gr.Accordion("Diarization", open=False):
|
206 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
207 |
tb_hf_token = gr.Text(label="HuggingFace Token", value="",
|
208 |
info="This is only needed the first time you download the model. If you already have models, you don't need to enter. "
|
209 |
-
|
210 |
-
dd_diarization_device = gr.Dropdown(label="Device",
|
|
|
|
|
211 |
with gr.Accordion("Insanely Fast Whisper Parameters", open=False,
|
212 |
visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
|
213 |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
@@ -220,30 +339,48 @@ class App:
|
|
220 |
btn_openfolder = gr.Button('📂', scale=1)
|
221 |
|
222 |
params = [tb_youtubelink, dd_file_format, cb_timestamp]
|
223 |
-
whisper_params = WhisperParameters(
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
|
249 |
inputs=params + whisper_params.as_list(),
|
@@ -266,20 +403,67 @@ class App:
|
|
266 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
267 |
with gr.Accordion("Advanced Parameters", open=False):
|
268 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
269 |
-
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0,
|
|
|
270 |
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
271 |
-
dd_compute_type = gr.Dropdown(label="Compute Type",
|
|
|
|
|
272 |
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
|
273 |
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
|
274 |
-
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True,
|
|
|
275 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
276 |
-
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
with gr.Accordion("VAD", open=False):
|
278 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
279 |
-
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
280 |
-
|
|
|
|
|
281 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
282 |
-
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
|
|
|
283 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
284 |
with gr.Accordion("Diarization", open=False):
|
285 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
@@ -301,30 +485,48 @@ class App:
|
|
301 |
btn_openfolder = gr.Button('📂', scale=1)
|
302 |
|
303 |
params = [mic_input, dd_file_format]
|
304 |
-
whisper_params = WhisperParameters(
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
330 |
inputs=params + whisper_params.as_list(),
|
@@ -389,7 +591,8 @@ class App:
|
|
389 |
md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")
|
390 |
|
391 |
btn_run.click(fn=self.nllb_inf.translate_file,
|
392 |
-
inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang,
|
|
|
393 |
outputs=[tb_indicator, files_subtitles])
|
394 |
|
395 |
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")),
|
@@ -415,7 +618,8 @@ class App:
|
|
415 |
|
416 |
# Create the parser for command-line arguments
|
417 |
parser = argparse.ArgumentParser()
|
418 |
-
parser.add_argument('--whisper_type', type=str, default="faster-whisper",
|
|
|
419 |
parser.add_argument('--share', type=bool, default=False, nargs='?', const=True, help='Gradio share value')
|
420 |
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
|
421 |
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
|
@@ -425,11 +629,17 @@ parser.add_argument('--password', type=str, default=None, help='Gradio authentic
|
|
425 |
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
|
426 |
parser.add_argument('--colab', type=bool, default=False, nargs='?', const=True, help='Is colab user or not')
|
427 |
parser.add_argument('--api_open', type=bool, default=False, nargs='?', const=True, help='enable api or not')
|
428 |
-
parser.add_argument('--whisper_model_dir', type=str, default=os.path.join("models", "Whisper"),
|
429 |
-
|
430 |
-
parser.add_argument('--
|
431 |
-
|
432 |
-
parser.add_argument('--
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
parser.add_argument('--output_dir', type=str, default=os.path.join("outputs"), help='Directory path of the outputs')
|
434 |
_args = parser.parse_args()
|
435 |
|
|
|
1 |
import os
|
2 |
import argparse
|
3 |
+
import gradio as gr
|
4 |
|
5 |
from modules.whisper.whisper_Inference import WhisperInference
|
6 |
from modules.whisper.faster_whisper_inference import FasterWhisperInference
|
|
|
85 |
with gr.Column():
|
86 |
input_file = gr.Files(type="filepath", label="Upload File here")
|
87 |
tb_input_folder = gr.Textbox(label="Input Folder Path (Optional)",
|
88 |
+
info="Optional: Specify the folder path where the input files are located, if you prefer to use local files instead of uploading them."
|
89 |
" Leave this field empty if you do not wish to use a local path.",
|
90 |
visible=self.args.colab,
|
91 |
value="")
|
|
|
98 |
with gr.Row():
|
99 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
100 |
with gr.Row():
|
101 |
+
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
|
102 |
+
interactive=True)
|
103 |
with gr.Accordion("Advanced Parameters", open=False):
|
104 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
105 |
+
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0,
|
106 |
+
interactive=True)
|
107 |
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
108 |
+
dd_compute_type = gr.Dropdown(label="Compute Type",
|
109 |
+
choices=self.whisper_inf.available_compute_types,
|
110 |
+
value=self.whisper_inf.current_compute_type, interactive=True)
|
111 |
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
|
112 |
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
|
113 |
+
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True,
|
114 |
+
interactive=True)
|
115 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
116 |
+
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0,
|
117 |
+
interactive=True)
|
118 |
+
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4,
|
119 |
+
interactive=True)
|
120 |
+
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
121 |
+
with gr.Column():
|
122 |
+
nb_length_penalty = gr.Number(label="Length Penalty", value=1,
|
123 |
+
info="Exponential length penalty constant.")
|
124 |
+
nb_repetition_penalty = gr.Number(label="Repetition Penalty", value=1,
|
125 |
+
info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
|
126 |
+
nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size", value=0, precision=0,
|
127 |
+
info="Prevent repetitions of n-grams with this size (set 0 to disable).")
|
128 |
+
tb_prefix = gr.Textbox(label="Prefix", value="",
|
129 |
+
info="Optional text to provide as a prefix for the first window.")
|
130 |
+
cb_suppress_blank = gr.Checkbox(label="Suppress Blank", value=True,
|
131 |
+
info="Suppress blank outputs at the beginning of the sampling.")
|
132 |
+
tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value="-1",
|
133 |
+
info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
|
134 |
+
nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp", value=1.0,
|
135 |
+
info="The initial timestamp cannot be later than this.")
|
136 |
+
cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=False,
|
137 |
+
info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
|
138 |
+
tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations", value="\"'“¿([{-",
|
139 |
+
info="If word_timestamps is True, merge these punctuation symbols with the next word.")
|
140 |
+
tb_append_punctuations = gr.Textbox(label="Append Punctuations",
|
141 |
+
value="\"'.。,,!!??::”)]}、",
|
142 |
+
info="If word_timestamps is True, merge these punctuation symbols with the previous word.")
|
143 |
+
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=None, precision=0,
|
144 |
+
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
|
145 |
+
nb_chunk_length = gr.Number(label="Chunk Length", value=None,
|
146 |
+
info="The length of audio segments. If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.")
|
147 |
+
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold",
|
148 |
+
value=None,
|
149 |
+
info="When word_timestamps is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
|
150 |
+
tb_hotwords = gr.Textbox(label="Hotwords", value="",
|
151 |
+
info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
|
152 |
+
nb_language_detection_threshold = gr.Number(label="Language Detection Threshold",
|
153 |
+
value=None,
|
154 |
+
info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
|
155 |
+
nb_language_detection_segments = gr.Number(label="Language Detection Segments", value=1,
|
156 |
+
precision=0,
|
157 |
+
info="Number of segments to consider for the language detection.")
|
158 |
with gr.Accordion("VAD", open=False):
|
159 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
160 |
+
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
161 |
+
value=0.5, info="Lower it to be more sensitive to small sounds.")
|
162 |
+
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0,
|
163 |
+
value=250)
|
164 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
165 |
+
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
|
166 |
+
value=2000)
|
167 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
168 |
with gr.Accordion("Diarization", open=False):
|
169 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
170 |
tb_hf_token = gr.Text(label="HuggingFace Token", value="",
|
171 |
info="This is only needed the first time you download the model. If you already have models, you don't need to enter. "
|
172 |
+
"To download the model, you must manually go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and agree to their requirement.")
|
173 |
+
dd_diarization_device = gr.Dropdown(label="Device",
|
174 |
+
choices=self.whisper_inf.diarizer.get_available_device(),
|
175 |
+
value=self.whisper_inf.diarizer.get_device())
|
176 |
+
with gr.Accordion("Insanely Fast Whisper Parameters", open=False,
|
177 |
+
visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
|
178 |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
179 |
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
|
180 |
with gr.Row():
|
|
|
185 |
btn_openfolder = gr.Button('📂', scale=1)
|
186 |
|
187 |
params = [input_file, tb_input_folder, dd_file_format, cb_timestamp]
|
188 |
+
whisper_params = WhisperParameters(
|
189 |
+
model_size=dd_model,
|
190 |
+
lang=dd_lang,
|
191 |
+
is_translate=cb_translate,
|
192 |
+
beam_size=nb_beam_size,
|
193 |
+
log_prob_threshold=nb_log_prob_threshold,
|
194 |
+
no_speech_threshold=nb_no_speech_threshold,
|
195 |
+
compute_type=dd_compute_type,
|
196 |
+
best_of=nb_best_of,
|
197 |
+
patience=nb_patience,
|
198 |
+
condition_on_previous_text=cb_condition_on_previous_text,
|
199 |
+
initial_prompt=tb_initial_prompt,
|
200 |
+
temperature=sd_temperature,
|
201 |
+
compression_ratio_threshold=nb_compression_ratio_threshold,
|
202 |
+
vad_filter=cb_vad_filter,
|
203 |
+
threshold=sd_threshold,
|
204 |
+
min_speech_duration_ms=nb_min_speech_duration_ms,
|
205 |
+
max_speech_duration_s=nb_max_speech_duration_s,
|
206 |
+
min_silence_duration_ms=nb_min_silence_duration_ms,
|
207 |
+
speech_pad_ms=nb_speech_pad_ms,
|
208 |
+
chunk_length_s=nb_chunk_length_s,
|
209 |
+
batch_size=nb_batch_size,
|
210 |
+
is_diarize=cb_diarize,
|
211 |
+
hf_token=tb_hf_token,
|
212 |
+
diarization_device=dd_diarization_device,
|
213 |
+
length_penalty=nb_length_penalty,
|
214 |
+
repetition_penalty=nb_repetition_penalty,
|
215 |
+
no_repeat_ngram_size=nb_no_repeat_ngram_size,
|
216 |
+
prefix=tb_prefix,
|
217 |
+
suppress_blank=cb_suppress_blank,
|
218 |
+
suppress_tokens=tb_suppress_tokens,
|
219 |
+
max_initial_timestamp=nb_max_initial_timestamp,
|
220 |
+
word_timestamps=cb_word_timestamps,
|
221 |
+
prepend_punctuations=tb_prepend_punctuations,
|
222 |
+
append_punctuations=tb_append_punctuations,
|
223 |
+
max_new_tokens=nb_max_new_tokens,
|
224 |
+
chunk_length=nb_chunk_length,
|
225 |
+
hallucination_silence_threshold=nb_hallucination_silence_threshold,
|
226 |
+
hotwords=tb_hotwords,
|
227 |
+
language_detection_threshold=nb_language_detection_threshold,
|
228 |
+
language_detection_segments=nb_language_detection_segments
|
229 |
+
)
|
230 |
|
231 |
btn_run.click(fn=self.whisper_inf.transcribe_file,
|
232 |
inputs=params + whisper_params.as_list(),
|
|
|
256 |
interactive=True)
|
257 |
with gr.Accordion("Advanced Parameters", open=False):
|
258 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
259 |
+
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0,
|
260 |
+
interactive=True)
|
261 |
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
262 |
+
dd_compute_type = gr.Dropdown(label="Compute Type",
|
263 |
+
choices=self.whisper_inf.available_compute_types,
|
264 |
+
value=self.whisper_inf.current_compute_type, interactive=True)
|
265 |
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
|
266 |
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
|
267 |
+
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True,
|
268 |
+
interactive=True)
|
269 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
270 |
+
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0,
|
271 |
+
interactive=True)
|
272 |
+
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4,
|
273 |
+
interactive=True)
|
274 |
+
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
275 |
+
with gr.Column():
|
276 |
+
nb_length_penalty = gr.Number(label="Length Penalty", value=1,
|
277 |
+
info="Exponential length penalty constant.")
|
278 |
+
nb_repetition_penalty = gr.Number(label="Repetition Penalty", value=1,
|
279 |
+
info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
|
280 |
+
nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size", value=0, precision=0,
|
281 |
+
info="Prevent repetitions of n-grams with this size (set 0 to disable).")
|
282 |
+
tb_prefix = gr.Textbox(label="Prefix", value="",
|
283 |
+
info="Optional text to provide as a prefix for the first window.")
|
284 |
+
cb_suppress_blank = gr.Checkbox(label="Suppress Blank", value=True,
|
285 |
+
info="Suppress blank outputs at the beginning of the sampling.")
|
286 |
+
tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value="-1",
|
287 |
+
info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
|
288 |
+
nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp", value=1.0,
|
289 |
+
info="The initial timestamp cannot be later than this.")
|
290 |
+
cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=False,
|
291 |
+
info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
|
292 |
+
tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations", value="\"'“¿([{-",
|
293 |
+
info="If word_timestamps is True, merge these punctuation symbols with the next word.")
|
294 |
+
tb_append_punctuations = gr.Textbox(label="Append Punctuations",
|
295 |
+
value="\"'.。,,!!??::”)]}、",
|
296 |
+
info="If word_timestamps is True, merge these punctuation symbols with the previous word.")
|
297 |
+
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=None, precision=0,
|
298 |
+
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
|
299 |
+
nb_chunk_length = gr.Number(label="Chunk Length", value=None,
|
300 |
+
info="The length of audio segments. If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.")
|
301 |
+
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold",
|
302 |
+
value=None,
|
303 |
+
info="When word_timestamps is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
|
304 |
+
tb_hotwords = gr.Textbox(label="Hotwords", value="",
|
305 |
+
info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
|
306 |
+
nb_language_detection_threshold = gr.Number(label="Language Detection Threshold",
|
307 |
+
value=None,
|
308 |
+
info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
|
309 |
+
nb_language_detection_segments = gr.Number(label="Language Detection Segments", value=1,
|
310 |
+
precision=0,
|
311 |
+
info="Number of segments to consider for the language detection.")
|
312 |
with gr.Accordion("VAD", open=False):
|
313 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
314 |
+
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
315 |
+
value=0.5, info="Lower it to be more sensitive to small sounds.")
|
316 |
+
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0,
|
317 |
+
value=250)
|
318 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
319 |
+
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
|
320 |
+
value=2000)
|
321 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
322 |
with gr.Accordion("Diarization", open=False):
|
323 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
324 |
tb_hf_token = gr.Text(label="HuggingFace Token", value="",
|
325 |
info="This is only needed the first time you download the model. If you already have models, you don't need to enter. "
|
326 |
+
"To download the model, you must manually go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and agree to their requirement.")
|
327 |
+
dd_diarization_device = gr.Dropdown(label="Device",
|
328 |
+
choices=self.whisper_inf.diarizer.get_available_device(),
|
329 |
+
value=self.whisper_inf.diarizer.get_device())
|
330 |
with gr.Accordion("Insanely Fast Whisper Parameters", open=False,
|
331 |
visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
|
332 |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
|
|
339 |
btn_openfolder = gr.Button('📂', scale=1)
|
340 |
|
341 |
params = [tb_youtubelink, dd_file_format, cb_timestamp]
|
342 |
+
whisper_params = WhisperParameters(
|
343 |
+
model_size=dd_model,
|
344 |
+
lang=dd_lang,
|
345 |
+
is_translate=cb_translate,
|
346 |
+
beam_size=nb_beam_size,
|
347 |
+
log_prob_threshold=nb_log_prob_threshold,
|
348 |
+
no_speech_threshold=nb_no_speech_threshold,
|
349 |
+
compute_type=dd_compute_type,
|
350 |
+
best_of=nb_best_of,
|
351 |
+
patience=nb_patience,
|
352 |
+
condition_on_previous_text=cb_condition_on_previous_text,
|
353 |
+
initial_prompt=tb_initial_prompt,
|
354 |
+
temperature=sd_temperature,
|
355 |
+
compression_ratio_threshold=nb_compression_ratio_threshold,
|
356 |
+
vad_filter=cb_vad_filter,
|
357 |
+
threshold=sd_threshold,
|
358 |
+
min_speech_duration_ms=nb_min_speech_duration_ms,
|
359 |
+
max_speech_duration_s=nb_max_speech_duration_s,
|
360 |
+
min_silence_duration_ms=nb_min_silence_duration_ms,
|
361 |
+
speech_pad_ms=nb_speech_pad_ms,
|
362 |
+
chunk_length_s=nb_chunk_length_s,
|
363 |
+
batch_size=nb_batch_size,
|
364 |
+
is_diarize=cb_diarize,
|
365 |
+
hf_token=tb_hf_token,
|
366 |
+
diarization_device=dd_diarization_device,
|
367 |
+
length_penalty=nb_length_penalty,
|
368 |
+
repetition_penalty=nb_repetition_penalty,
|
369 |
+
no_repeat_ngram_size=nb_no_repeat_ngram_size,
|
370 |
+
prefix=tb_prefix,
|
371 |
+
suppress_blank=cb_suppress_blank,
|
372 |
+
suppress_tokens=tb_suppress_tokens,
|
373 |
+
max_initial_timestamp=nb_max_initial_timestamp,
|
374 |
+
word_timestamps=cb_word_timestamps,
|
375 |
+
prepend_punctuations=tb_prepend_punctuations,
|
376 |
+
append_punctuations=tb_append_punctuations,
|
377 |
+
max_new_tokens=nb_max_new_tokens,
|
378 |
+
chunk_length=nb_chunk_length,
|
379 |
+
hallucination_silence_threshold=nb_hallucination_silence_threshold,
|
380 |
+
hotwords=tb_hotwords,
|
381 |
+
language_detection_threshold=nb_language_detection_threshold,
|
382 |
+
language_detection_segments=nb_language_detection_segments
|
383 |
+
)
|
384 |
|
385 |
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
|
386 |
inputs=params + whisper_params.as_list(),
|
|
|
403 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
404 |
with gr.Accordion("Advanced Parameters", open=False):
|
405 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
406 |
+
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0,
|
407 |
+
interactive=True)
|
408 |
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
409 |
+
dd_compute_type = gr.Dropdown(label="Compute Type",
|
410 |
+
choices=self.whisper_inf.available_compute_types,
|
411 |
+
value=self.whisper_inf.current_compute_type, interactive=True)
|
412 |
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
|
413 |
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
|
414 |
+
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True,
|
415 |
+
interactive=True)
|
416 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
417 |
+
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0,
|
418 |
+
interactive=True)
|
419 |
+
|
420 |
+
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
421 |
+
with gr.Column():
|
422 |
+
nb_length_penalty = gr.Number(label="Length Penalty", value=1,
|
423 |
+
info="Exponential length penalty constant.")
|
424 |
+
nb_repetition_penalty = gr.Number(label="Repetition Penalty", value=1,
|
425 |
+
info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
|
426 |
+
nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size", value=0, precision=0,
|
427 |
+
info="Prevent repetitions of n-grams with this size (set 0 to disable).")
|
428 |
+
tb_prefix = gr.Textbox(label="Prefix", value="",
|
429 |
+
info="Optional text to provide as a prefix for the first window.")
|
430 |
+
cb_suppress_blank = gr.Checkbox(label="Suppress Blank", value=True,
|
431 |
+
info="Suppress blank outputs at the beginning of the sampling.")
|
432 |
+
tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value="-1",
|
433 |
+
info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
|
434 |
+
nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp", value=1.0,
|
435 |
+
info="The initial timestamp cannot be later than this.")
|
436 |
+
cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=False,
|
437 |
+
info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
|
438 |
+
tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations", value="\"'“¿([{-",
|
439 |
+
info="If word_timestamps is True, merge these punctuation symbols with the next word.")
|
440 |
+
tb_append_punctuations = gr.Textbox(label="Append Punctuations",
|
441 |
+
value="\"'.。,,!!??::”)]}、",
|
442 |
+
info="If word_timestamps is True, merge these punctuation symbols with the previous word.")
|
443 |
+
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=None, precision=0,
|
444 |
+
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
|
445 |
+
nb_chunk_length = gr.Number(label="Chunk Length", value=None,
|
446 |
+
info="The length of audio segments. If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.")
|
447 |
+
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold",
|
448 |
+
value=None,
|
449 |
+
info="When word_timestamps is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
|
450 |
+
tb_hotwords = gr.Textbox(label="Hotwords", value="",
|
451 |
+
info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
|
452 |
+
nb_language_detection_threshold = gr.Number(label="Language Detection Threshold",
|
453 |
+
value=None,
|
454 |
+
info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
|
455 |
+
nb_language_detection_segments = gr.Number(label="Language Detection Segments", value=1,
|
456 |
+
precision=0,
|
457 |
+
info="Number of segments to consider for the language detection.")
|
458 |
with gr.Accordion("VAD", open=False):
|
459 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
460 |
+
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
461 |
+
value=0.5, info="Lower it to be more sensitive to small sounds.")
|
462 |
+
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0,
|
463 |
+
value=250)
|
464 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
465 |
+
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
|
466 |
+
value=2000)
|
467 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
468 |
with gr.Accordion("Diarization", open=False):
|
469 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
|
|
485 |
btn_openfolder = gr.Button('📂', scale=1)
|
486 |
|
487 |
params = [mic_input, dd_file_format]
|
488 |
+
whisper_params = WhisperParameters(
|
489 |
+
model_size=dd_model,
|
490 |
+
lang=dd_lang,
|
491 |
+
is_translate=cb_translate,
|
492 |
+
beam_size=nb_beam_size,
|
493 |
+
log_prob_threshold=nb_log_prob_threshold,
|
494 |
+
no_speech_threshold=nb_no_speech_threshold,
|
495 |
+
compute_type=dd_compute_type,
|
496 |
+
best_of=nb_best_of,
|
497 |
+
patience=nb_patience,
|
498 |
+
condition_on_previous_text=cb_condition_on_previous_text,
|
499 |
+
initial_prompt=tb_initial_prompt,
|
500 |
+
temperature=sd_temperature,
|
501 |
+
compression_ratio_threshold=nb_compression_ratio_threshold,
|
502 |
+
vad_filter=cb_vad_filter,
|
503 |
+
threshold=sd_threshold,
|
504 |
+
min_speech_duration_ms=nb_min_speech_duration_ms,
|
505 |
+
max_speech_duration_s=nb_max_speech_duration_s,
|
506 |
+
min_silence_duration_ms=nb_min_silence_duration_ms,
|
507 |
+
speech_pad_ms=nb_speech_pad_ms,
|
508 |
+
chunk_length_s=nb_chunk_length_s,
|
509 |
+
batch_size=nb_batch_size,
|
510 |
+
is_diarize=cb_diarize,
|
511 |
+
hf_token=tb_hf_token,
|
512 |
+
diarization_device=dd_diarization_device,
|
513 |
+
length_penalty=nb_length_penalty,
|
514 |
+
repetition_penalty=nb_repetition_penalty,
|
515 |
+
no_repeat_ngram_size=nb_no_repeat_ngram_size,
|
516 |
+
prefix=tb_prefix,
|
517 |
+
suppress_blank=cb_suppress_blank,
|
518 |
+
suppress_tokens=tb_suppress_tokens,
|
519 |
+
max_initial_timestamp=nb_max_initial_timestamp,
|
520 |
+
word_timestamps=cb_word_timestamps,
|
521 |
+
prepend_punctuations=tb_prepend_punctuations,
|
522 |
+
append_punctuations=tb_append_punctuations,
|
523 |
+
max_new_tokens=nb_max_new_tokens,
|
524 |
+
chunk_length=nb_chunk_length,
|
525 |
+
hallucination_silence_threshold=nb_hallucination_silence_threshold,
|
526 |
+
hotwords=tb_hotwords,
|
527 |
+
language_detection_threshold=nb_language_detection_threshold,
|
528 |
+
language_detection_segments=nb_language_detection_segments
|
529 |
+
)
|
530 |
|
531 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
532 |
inputs=params + whisper_params.as_list(),
|
|
|
591 |
md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")
|
592 |
|
593 |
btn_run.click(fn=self.nllb_inf.translate_file,
|
594 |
+
inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang,
|
595 |
+
nb_max_length, cb_timestamp],
|
596 |
outputs=[tb_indicator, files_subtitles])
|
597 |
|
598 |
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")),
|
|
|
618 |
|
619 |
# Create the parser for command-line arguments
|
620 |
parser = argparse.ArgumentParser()
|
621 |
+
parser.add_argument('--whisper_type', type=str, default="faster-whisper",
|
622 |
+
help='A type of the whisper implementation between: ["whisper", "faster-whisper", "insanely-fast-whisper"]')
|
623 |
parser.add_argument('--share', type=bool, default=False, nargs='?', const=True, help='Gradio share value')
|
624 |
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
|
625 |
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
|
|
|
629 |
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
|
630 |
parser.add_argument('--colab', type=bool, default=False, nargs='?', const=True, help='Is colab user or not')
|
631 |
parser.add_argument('--api_open', type=bool, default=False, nargs='?', const=True, help='enable api or not')
|
632 |
+
parser.add_argument('--whisper_model_dir', type=str, default=os.path.join("models", "Whisper"),
|
633 |
+
help='Directory path of the whisper model')
|
634 |
+
parser.add_argument('--faster_whisper_model_dir', type=str, default=os.path.join("models", "Whisper", "faster-whisper"),
|
635 |
+
help='Directory path of the faster-whisper model')
|
636 |
+
parser.add_argument('--insanely_fast_whisper_model_dir', type=str,
|
637 |
+
default=os.path.join("models", "Whisper", "insanely-fast-whisper"),
|
638 |
+
help='Directory path of the insanely-fast-whisper model')
|
639 |
+
parser.add_argument('--diarization_model_dir', type=str, default=os.path.join("models", "Diarization"),
|
640 |
+
help='Directory path of the diarization model')
|
641 |
+
parser.add_argument('--nllb_model_dir', type=str, default=os.path.join("models", "NLLB"),
|
642 |
+
help='Directory path of the Facebook NLLB model')
|
643 |
parser.add_argument('--output_dir', type=str, default=os.path.join("outputs"), help='Directory path of the outputs')
|
644 |
_args = parser.parse_args()
|
645 |
|