Spaces:
Running
Running
Merge pull request #175 from jhj0517/feature/integrate-insanely_fast_whisper
Browse files- app.py +111 -86
- modules/faster_whisper_inference.py +1 -1
- modules/insanely_fast_whisper_inference.py +181 -0
- modules/whisper_Inference.py +1 -1
- modules/whisper_parameter.py +52 -4
- user-start-webui.bat +5 -1
app.py
CHANGED
@@ -4,6 +4,7 @@ import argparse
|
|
4 |
|
5 |
from modules.whisper_Inference import WhisperInference
|
6 |
from modules.faster_whisper_inference import FasterWhisperInference
|
|
|
7 |
from modules.nllb_inference import NLLBInference
|
8 |
from ui.htmls import *
|
9 |
from modules.youtube_manager import get_ytmetas
|
@@ -24,12 +25,16 @@ class App:
|
|
24 |
def init_whisper(self):
|
25 |
whisper_type = self.args.whisper_type.lower().strip()
|
26 |
|
27 |
-
if whisper_type in ["faster_whisper", "faster-whisper"]:
|
28 |
whisper_inf = FasterWhisperInference()
|
29 |
whisper_inf.model_dir = self.args.faster_whisper_model_dir
|
30 |
-
|
31 |
whisper_inf = WhisperInference()
|
32 |
whisper_inf.model_dir = self.args.whisper_model_dir
|
|
|
|
|
|
|
|
|
33 |
else:
|
34 |
whisper_inf = FasterWhisperInference()
|
35 |
whisper_inf.model_dir = self.args.faster_whisper_model_dir
|
@@ -69,14 +74,6 @@ class App:
|
|
69 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
70 |
with gr.Row():
|
71 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename", interactive=True)
|
72 |
-
with gr.Accordion("VAD Options", open=False, visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
73 |
-
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
74 |
-
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5)
|
75 |
-
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
|
76 |
-
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
77 |
-
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
|
78 |
-
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
|
79 |
-
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
80 |
with gr.Accordion("Advanced_Parameters", open=False):
|
81 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
82 |
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
|
@@ -88,6 +85,17 @@ class App:
|
|
88 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
89 |
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True)
|
90 |
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4, interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
with gr.Row():
|
92 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
93 |
with gr.Row():
|
@@ -96,26 +104,28 @@ class App:
|
|
96 |
btn_openfolder = gr.Button('📂', scale=1)
|
97 |
|
98 |
params = [input_file, dd_file_format, cb_timestamp]
|
99 |
-
whisper_params =
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
119 |
|
120 |
btn_run.click(fn=self.whisper_inf.transcribe_file,
|
121 |
inputs=params + whisper_params.to_list(),
|
@@ -143,14 +153,6 @@ class App:
|
|
143 |
with gr.Row():
|
144 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
|
145 |
interactive=True)
|
146 |
-
with gr.Accordion("VAD Options", open=False, visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
147 |
-
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
148 |
-
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5)
|
149 |
-
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
|
150 |
-
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
151 |
-
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
|
152 |
-
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
|
153 |
-
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
154 |
with gr.Accordion("Advanced_Parameters", open=False):
|
155 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
156 |
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
|
@@ -162,6 +164,18 @@ class App:
|
|
162 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
163 |
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True)
|
164 |
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4, interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
with gr.Row():
|
166 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
167 |
with gr.Row():
|
@@ -170,26 +184,29 @@ class App:
|
|
170 |
btn_openfolder = gr.Button('📂', scale=1)
|
171 |
|
172 |
params = [tb_youtubelink, dd_file_format, cb_timestamp]
|
173 |
-
whisper_params =
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
193 |
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
|
194 |
inputs=params + whisper_params.to_list(),
|
195 |
outputs=[tb_indicator, files_subtitles])
|
@@ -209,14 +226,6 @@ class App:
|
|
209 |
dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
|
210 |
with gr.Row():
|
211 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
212 |
-
with gr.Accordion("VAD Options", open=False, visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
213 |
-
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
214 |
-
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5)
|
215 |
-
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
|
216 |
-
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
217 |
-
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
|
218 |
-
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
|
219 |
-
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
220 |
with gr.Accordion("Advanced_Parameters", open=False):
|
221 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
222 |
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
|
@@ -227,6 +236,18 @@ class App:
|
|
227 |
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True, interactive=True)
|
228 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
229 |
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
with gr.Row():
|
231 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
232 |
with gr.Row():
|
@@ -235,26 +256,29 @@ class App:
|
|
235 |
btn_openfolder = gr.Button('📂', scale=1)
|
236 |
|
237 |
params = [mic_input, dd_file_format]
|
238 |
-
whisper_params =
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
258 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
259 |
inputs=params + whisper_params.to_list(),
|
260 |
outputs=[tb_indicator, files_subtitles])
|
@@ -354,6 +378,7 @@ parser.add_argument('--colab', type=bool, default=False, nargs='?', const=True,
|
|
354 |
parser.add_argument('--api_open', type=bool, default=False, nargs='?', const=True, help='enable api or not')
|
355 |
parser.add_argument('--whisper_model_dir', type=str, default=os.path.join("models", "Whisper"), help='Directory path of the whisper model')
|
356 |
parser.add_argument('--faster_whisper_model_dir', type=str, default=os.path.join("models", "Whisper", "faster-whisper"), help='Directory path of the faster-whisper model')
|
|
|
357 |
_args = parser.parse_args()
|
358 |
|
359 |
if __name__ == "__main__":
|
|
|
4 |
|
5 |
from modules.whisper_Inference import WhisperInference
|
6 |
from modules.faster_whisper_inference import FasterWhisperInference
|
7 |
+
from modules.insanely_fast_whisper_inference import InsanelyFastWhisperInference
|
8 |
from modules.nllb_inference import NLLBInference
|
9 |
from ui.htmls import *
|
10 |
from modules.youtube_manager import get_ytmetas
|
|
|
25 |
def init_whisper(self):
|
26 |
whisper_type = self.args.whisper_type.lower().strip()
|
27 |
|
28 |
+
if whisper_type in ["faster_whisper", "faster-whisper", "fasterwhisper"]:
|
29 |
whisper_inf = FasterWhisperInference()
|
30 |
whisper_inf.model_dir = self.args.faster_whisper_model_dir
|
31 |
+
elif whisper_type in ["whisper"]:
|
32 |
whisper_inf = WhisperInference()
|
33 |
whisper_inf.model_dir = self.args.whisper_model_dir
|
34 |
+
elif whisper_type in ["insanely_fast_whisper", "insanely-fast-whisper", "insanelyfastwhisper",
|
35 |
+
"insanely_faster_whisper", "insanely-faster-whisper", "insanelyfasterwhisper"]:
|
36 |
+
whisper_inf = InsanelyFastWhisperInference()
|
37 |
+
whisper_inf.model_dir = self.args.insanely_fast_whisper_model_dir
|
38 |
else:
|
39 |
whisper_inf = FasterWhisperInference()
|
40 |
whisper_inf.model_dir = self.args.faster_whisper_model_dir
|
|
|
74 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
75 |
with gr.Row():
|
76 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
with gr.Accordion("Advanced_Parameters", open=False):
|
78 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
79 |
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
|
|
|
85 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
86 |
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True)
|
87 |
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4, interactive=True)
|
88 |
+
with gr.Accordion("VAD Options", open=False, visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
89 |
+
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
90 |
+
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5)
|
91 |
+
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
|
92 |
+
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
93 |
+
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
|
94 |
+
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
|
95 |
+
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
96 |
+
with gr.Accordion("Insanely Fast Whisper Parameters", open=False, visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
|
97 |
+
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
98 |
+
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
|
99 |
with gr.Row():
|
100 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
101 |
with gr.Row():
|
|
|
104 |
btn_openfolder = gr.Button('📂', scale=1)
|
105 |
|
106 |
params = [input_file, dd_file_format, cb_timestamp]
|
107 |
+
whisper_params = WhisperParameters(model_size=dd_model,
|
108 |
+
lang=dd_lang,
|
109 |
+
is_translate=cb_translate,
|
110 |
+
beam_size=nb_beam_size,
|
111 |
+
log_prob_threshold=nb_log_prob_threshold,
|
112 |
+
no_speech_threshold=nb_no_speech_threshold,
|
113 |
+
compute_type=dd_compute_type,
|
114 |
+
best_of=nb_best_of,
|
115 |
+
patience=nb_patience,
|
116 |
+
condition_on_previous_text=cb_condition_on_previous_text,
|
117 |
+
initial_prompt=tb_initial_prompt,
|
118 |
+
temperature=sd_temperature,
|
119 |
+
compression_ratio_threshold=nb_compression_ratio_threshold,
|
120 |
+
vad_filter=cb_vad_filter,
|
121 |
+
threshold=sd_threshold,
|
122 |
+
min_speech_duration_ms=nb_min_speech_duration_ms,
|
123 |
+
max_speech_duration_s=nb_max_speech_duration_s,
|
124 |
+
min_silence_duration_ms=nb_min_silence_duration_ms,
|
125 |
+
window_size_sample=nb_window_size_sample,
|
126 |
+
speech_pad_ms=nb_speech_pad_ms,
|
127 |
+
chunk_length_s=nb_chunk_length_s,
|
128 |
+
batch_size=nb_batch_size)
|
129 |
|
130 |
btn_run.click(fn=self.whisper_inf.transcribe_file,
|
131 |
inputs=params + whisper_params.to_list(),
|
|
|
153 |
with gr.Row():
|
154 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
|
155 |
interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
with gr.Accordion("Advanced_Parameters", open=False):
|
157 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
158 |
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
|
|
|
164 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
165 |
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True)
|
166 |
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4, interactive=True)
|
167 |
+
with gr.Accordion("VAD Options", open=False, visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
168 |
+
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
169 |
+
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5)
|
170 |
+
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
|
171 |
+
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
172 |
+
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
|
173 |
+
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
|
174 |
+
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
175 |
+
with gr.Accordion("Insanely Fast Whisper Parameters", open=False,
|
176 |
+
visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
|
177 |
+
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
178 |
+
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
|
179 |
with gr.Row():
|
180 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
181 |
with gr.Row():
|
|
|
184 |
btn_openfolder = gr.Button('📂', scale=1)
|
185 |
|
186 |
params = [tb_youtubelink, dd_file_format, cb_timestamp]
|
187 |
+
whisper_params = WhisperParameters(model_size=dd_model,
|
188 |
+
lang=dd_lang,
|
189 |
+
is_translate=cb_translate,
|
190 |
+
beam_size=nb_beam_size,
|
191 |
+
log_prob_threshold=nb_log_prob_threshold,
|
192 |
+
no_speech_threshold=nb_no_speech_threshold,
|
193 |
+
compute_type=dd_compute_type,
|
194 |
+
best_of=nb_best_of,
|
195 |
+
patience=nb_patience,
|
196 |
+
condition_on_previous_text=cb_condition_on_previous_text,
|
197 |
+
initial_prompt=tb_initial_prompt,
|
198 |
+
temperature=sd_temperature,
|
199 |
+
compression_ratio_threshold=nb_compression_ratio_threshold,
|
200 |
+
vad_filter=cb_vad_filter,
|
201 |
+
threshold=sd_threshold,
|
202 |
+
min_speech_duration_ms=nb_min_speech_duration_ms,
|
203 |
+
max_speech_duration_s=nb_max_speech_duration_s,
|
204 |
+
min_silence_duration_ms=nb_min_silence_duration_ms,
|
205 |
+
window_size_sample=nb_window_size_sample,
|
206 |
+
speech_pad_ms=nb_speech_pad_ms,
|
207 |
+
chunk_length_s=nb_chunk_length_s,
|
208 |
+
batch_size=nb_batch_size)
|
209 |
+
|
210 |
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
|
211 |
inputs=params + whisper_params.to_list(),
|
212 |
outputs=[tb_indicator, files_subtitles])
|
|
|
226 |
dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
|
227 |
with gr.Row():
|
228 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
with gr.Accordion("Advanced_Parameters", open=False):
|
230 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
231 |
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
|
|
|
236 |
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True, interactive=True)
|
237 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
238 |
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True)
|
239 |
+
with gr.Accordion("VAD Options", open=False, visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
240 |
+
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
241 |
+
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5)
|
242 |
+
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
|
243 |
+
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
244 |
+
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
|
245 |
+
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
|
246 |
+
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
247 |
+
with gr.Accordion("Insanely Fast Whisper Parameters", open=False,
|
248 |
+
visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
|
249 |
+
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
250 |
+
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
|
251 |
with gr.Row():
|
252 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
253 |
with gr.Row():
|
|
|
256 |
btn_openfolder = gr.Button('📂', scale=1)
|
257 |
|
258 |
params = [mic_input, dd_file_format]
|
259 |
+
whisper_params = WhisperParameters(model_size=dd_model,
|
260 |
+
lang=dd_lang,
|
261 |
+
is_translate=cb_translate,
|
262 |
+
beam_size=nb_beam_size,
|
263 |
+
log_prob_threshold=nb_log_prob_threshold,
|
264 |
+
no_speech_threshold=nb_no_speech_threshold,
|
265 |
+
compute_type=dd_compute_type,
|
266 |
+
best_of=nb_best_of,
|
267 |
+
patience=nb_patience,
|
268 |
+
condition_on_previous_text=cb_condition_on_previous_text,
|
269 |
+
initial_prompt=tb_initial_prompt,
|
270 |
+
temperature=sd_temperature,
|
271 |
+
compression_ratio_threshold=nb_compression_ratio_threshold,
|
272 |
+
vad_filter=cb_vad_filter,
|
273 |
+
threshold=sd_threshold,
|
274 |
+
min_speech_duration_ms=nb_min_speech_duration_ms,
|
275 |
+
max_speech_duration_s=nb_max_speech_duration_s,
|
276 |
+
min_silence_duration_ms=nb_min_silence_duration_ms,
|
277 |
+
window_size_sample=nb_window_size_sample,
|
278 |
+
speech_pad_ms=nb_speech_pad_ms,
|
279 |
+
chunk_length_s=nb_chunk_length_s,
|
280 |
+
batch_size=nb_batch_size)
|
281 |
+
|
282 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
283 |
inputs=params + whisper_params.to_list(),
|
284 |
outputs=[tb_indicator, files_subtitles])
|
|
|
378 |
parser.add_argument('--api_open', type=bool, default=False, nargs='?', const=True, help='enable api or not')
|
379 |
parser.add_argument('--whisper_model_dir', type=str, default=os.path.join("models", "Whisper"), help='Directory path of the whisper model')
|
380 |
parser.add_argument('--faster_whisper_model_dir', type=str, default=os.path.join("models", "Whisper", "faster-whisper"), help='Directory path of the faster-whisper model')
|
381 |
+
parser.add_argument('--insanely_fast_whisper_model_dir', type=str, default=os.path.join("models", "Whisper", "insanely-fast-whisper"), help='Directory path of the insanely-fast-whisper model')
|
382 |
_args = parser.parse_args()
|
383 |
|
384 |
if __name__ == "__main__":
|
modules/faster_whisper_inference.py
CHANGED
@@ -52,7 +52,7 @@ class FasterWhisperInference(WhisperBase):
|
|
52 |
"""
|
53 |
start_time = time.time()
|
54 |
|
55 |
-
params =
|
56 |
|
57 |
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
|
58 |
self.update_model(params.model_size, params.compute_type, progress)
|
|
|
52 |
"""
|
53 |
start_time = time.time()
|
54 |
|
55 |
+
params = WhisperParameters.post_process(*whisper_params)
|
56 |
|
57 |
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
|
58 |
self.update_model(params.model_size, params.compute_type, progress)
|
modules/insanely_fast_whisper_inference.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import numpy as np
|
4 |
+
from typing import BinaryIO, Union, Tuple, List
|
5 |
+
import torch
|
6 |
+
from transformers import pipeline
|
7 |
+
from transformers.utils import is_flash_attn_2_available
|
8 |
+
import gradio as gr
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
import whisper
|
11 |
+
from rich.progress import Progress, TimeElapsedColumn, BarColumn, TextColumn
|
12 |
+
|
13 |
+
from modules.whisper_parameter import *
|
14 |
+
from modules.whisper_base import WhisperBase
|
15 |
+
|
16 |
+
|
17 |
+
class InsanelyFastWhisperInference(WhisperBase):
|
18 |
+
def __init__(self):
|
19 |
+
super().__init__(
|
20 |
+
model_dir=os.path.join("models", "Whisper", "insanely_fast_whisper")
|
21 |
+
)
|
22 |
+
openai_models = whisper.available_models()
|
23 |
+
distil_models = ["distil-large-v2", "distil-large-v3", "distil-medium.en", "distil-small.en"]
|
24 |
+
self.available_models = openai_models + distil_models
|
25 |
+
self.available_compute_types = ["float16"]
|
26 |
+
|
27 |
+
def transcribe(self,
|
28 |
+
audio: Union[str, np.ndarray, torch.Tensor],
|
29 |
+
progress: gr.Progress,
|
30 |
+
*whisper_params,
|
31 |
+
) -> Tuple[List[dict], float]:
|
32 |
+
"""
|
33 |
+
transcribe method for faster-whisper.
|
34 |
+
|
35 |
+
Parameters
|
36 |
+
----------
|
37 |
+
audio: Union[str, BinaryIO, np.ndarray]
|
38 |
+
Audio path or file binary or Audio numpy array
|
39 |
+
progress: gr.Progress
|
40 |
+
Indicator to show progress directly in gradio.
|
41 |
+
*whisper_params: tuple
|
42 |
+
Gradio components related to Whisper. see whisper_data_class.py for details.
|
43 |
+
|
44 |
+
Returns
|
45 |
+
----------
|
46 |
+
segments_result: List[dict]
|
47 |
+
list of dicts that includes start, end timestamps and transcribed text
|
48 |
+
elapsed_time: float
|
49 |
+
elapsed time for transcription
|
50 |
+
"""
|
51 |
+
start_time = time.time()
|
52 |
+
params = WhisperParameters.post_process(*whisper_params)
|
53 |
+
|
54 |
+
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
|
55 |
+
self.update_model(params.model_size, params.compute_type, progress)
|
56 |
+
|
57 |
+
if params.lang == "Automatic Detection":
|
58 |
+
params.lang = None
|
59 |
+
else:
|
60 |
+
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
|
61 |
+
params.lang = language_code_dict[params.lang]
|
62 |
+
|
63 |
+
progress(0, desc="Transcribing...Progress is not shown in insanely-fast-whisper.")
|
64 |
+
with Progress(
|
65 |
+
TextColumn("[progress.description]{task.description}"),
|
66 |
+
BarColumn(style="yellow1", pulse_style="white"),
|
67 |
+
TimeElapsedColumn(),
|
68 |
+
) as progress:
|
69 |
+
progress.add_task("[yellow]Transcribing...", total=None)
|
70 |
+
|
71 |
+
segments = self.model(
|
72 |
+
inputs=audio,
|
73 |
+
return_timestamps=True,
|
74 |
+
chunk_length_s=params.chunk_length_s,
|
75 |
+
batch_size=params.batch_size,
|
76 |
+
generate_kwargs={
|
77 |
+
"language": params.lang,
|
78 |
+
"task": "translate" if params.is_translate and self.current_model_size in self.translatable_models else "transcribe",
|
79 |
+
"no_speech_threshold": params.no_speech_threshold,
|
80 |
+
"temperature": params.temperature,
|
81 |
+
"compression_ratio_threshold": params.compression_ratio_threshold
|
82 |
+
}
|
83 |
+
)
|
84 |
+
|
85 |
+
segments_result = self.format_result(
|
86 |
+
transcribed_result=segments,
|
87 |
+
)
|
88 |
+
elapsed_time = time.time() - start_time
|
89 |
+
return segments_result, elapsed_time
|
90 |
+
|
91 |
+
def update_model(self,
|
92 |
+
model_size: str,
|
93 |
+
compute_type: str,
|
94 |
+
progress: gr.Progress,
|
95 |
+
):
|
96 |
+
"""
|
97 |
+
Update current model setting
|
98 |
+
|
99 |
+
Parameters
|
100 |
+
----------
|
101 |
+
model_size: str
|
102 |
+
Size of whisper model
|
103 |
+
compute_type: str
|
104 |
+
Compute type for transcription.
|
105 |
+
see more info : https://opennmt.net/CTranslate2/quantization.html
|
106 |
+
progress: gr.Progress
|
107 |
+
Indicator to show progress directly in gradio.
|
108 |
+
"""
|
109 |
+
progress(0, desc="Initializing Model..")
|
110 |
+
model_path = os.path.join(self.model_dir, model_size)
|
111 |
+
if not os.path.isdir(model_path) or not os.listdir(model_path):
|
112 |
+
self.download_model(
|
113 |
+
model_size=model_size,
|
114 |
+
download_root=model_path,
|
115 |
+
progress=progress
|
116 |
+
)
|
117 |
+
|
118 |
+
self.current_compute_type = compute_type
|
119 |
+
self.current_model_size = model_size
|
120 |
+
self.model = pipeline(
|
121 |
+
"automatic-speech-recognition",
|
122 |
+
model=os.path.join(self.model_dir, model_size),
|
123 |
+
torch_dtype=self.current_compute_type,
|
124 |
+
device=self.device,
|
125 |
+
model_kwargs={"attn_implementation": "flash_attention_2"} if is_flash_attn_2_available() else {"attn_implementation": "sdpa"},
|
126 |
+
)
|
127 |
+
|
128 |
+
@staticmethod
|
129 |
+
def format_result(
|
130 |
+
transcribed_result: dict
|
131 |
+
) -> List[dict]:
|
132 |
+
"""
|
133 |
+
Format the transcription result of insanely_fast_whisper as the same with other implementation.
|
134 |
+
|
135 |
+
Parameters
|
136 |
+
----------
|
137 |
+
transcribed_result: dict
|
138 |
+
Transcription result of the insanely_fast_whisper
|
139 |
+
|
140 |
+
Returns
|
141 |
+
----------
|
142 |
+
result: List[dict]
|
143 |
+
Formatted result as the same with other implementation
|
144 |
+
"""
|
145 |
+
result = transcribed_result["chunks"]
|
146 |
+
for item in result:
|
147 |
+
start, end = item["timestamp"][0], item["timestamp"][1]
|
148 |
+
if end is None:
|
149 |
+
end = start
|
150 |
+
item["start"] = start
|
151 |
+
item["end"] = end
|
152 |
+
return result
|
153 |
+
|
154 |
+
@staticmethod
|
155 |
+
def download_model(
|
156 |
+
model_size: str,
|
157 |
+
download_root: str,
|
158 |
+
progress: gr.Progress
|
159 |
+
):
|
160 |
+
progress(0, 'Initializing model..')
|
161 |
+
print(f'Downloading {model_size} to "{download_root}"....')
|
162 |
+
|
163 |
+
os.makedirs(download_root, exist_ok=True)
|
164 |
+
download_list = [
|
165 |
+
"model.safetensors",
|
166 |
+
"config.json",
|
167 |
+
"generation_config.json",
|
168 |
+
"preprocessor_config.json",
|
169 |
+
"tokenizer.json",
|
170 |
+
"tokenizer_config.json",
|
171 |
+
"added_tokens.json",
|
172 |
+
"special_tokens_map.json",
|
173 |
+
"vocab.json",
|
174 |
+
]
|
175 |
+
|
176 |
+
if model_size.startswith("distil"):
|
177 |
+
repo_id = f"distil-whisper/{model_size}"
|
178 |
+
else:
|
179 |
+
repo_id = f"openai/whisper-{model_size}"
|
180 |
+
for item in download_list:
|
181 |
+
hf_hub_download(repo_id=repo_id, filename=item, local_dir=download_root)
|
modules/whisper_Inference.py
CHANGED
@@ -41,7 +41,7 @@ class WhisperInference(WhisperBase):
|
|
41 |
elapsed time for transcription
|
42 |
"""
|
43 |
start_time = time.time()
|
44 |
-
params =
|
45 |
|
46 |
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
|
47 |
self.update_model(params.model_size, params.compute_type, progress)
|
|
|
41 |
elapsed time for transcription
|
42 |
"""
|
43 |
start_time = time.time()
|
44 |
+
params = WhisperParameters.post_process(*whisper_params)
|
45 |
|
46 |
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
|
47 |
self.update_model(params.model_size, params.compute_type, progress)
|
modules/whisper_parameter.py
CHANGED
@@ -4,7 +4,7 @@ from typing import Optional
|
|
4 |
|
5 |
|
6 |
@dataclass
|
7 |
-
class
|
8 |
model_size: gr.Dropdown
|
9 |
lang: gr.Dropdown
|
10 |
is_translate: gr.Checkbox
|
@@ -25,8 +25,12 @@ class WhisperGradioComponents:
|
|
25 |
min_silence_duration_ms: gr.Number
|
26 |
window_size_sample: gr.Number
|
27 |
speech_pad_ms: gr.Number
|
|
|
|
|
28 |
"""
|
29 |
A data class for Gradio components of the Whisper Parameters. Use "before" Gradio pre-processing.
|
|
|
|
|
30 |
See more about Gradio pre-processing: https://www.gradio.app/docs/components
|
31 |
|
32 |
Attributes
|
@@ -111,11 +115,18 @@ class WhisperGradioComponents:
|
|
111 |
|
112 |
speech_pad_ms: gr.Number
|
113 |
This parameter is related with Silero VAD. Final speech chunks are padded by speech_pad_ms each side
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
"""
|
115 |
|
116 |
def to_list(self) -> list:
|
117 |
"""
|
118 |
-
Converts the data class attributes into a list
|
119 |
See more about Gradio pre-processing: : https://www.gradio.app/docs/components
|
120 |
|
121 |
Returns
|
@@ -124,6 +135,42 @@ class WhisperGradioComponents:
|
|
124 |
"""
|
125 |
return [getattr(self, f.name) for f in fields(self)]
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
@dataclass
|
129 |
class WhisperValues:
|
@@ -147,7 +194,8 @@ class WhisperValues:
|
|
147 |
min_silence_duration_ms: int
|
148 |
window_size_samples: int
|
149 |
speech_pad_ms: int
|
|
|
|
|
150 |
"""
|
151 |
-
A data class to use Whisper parameters.
|
152 |
-
See more about Gradio pre-processing: : https://www.gradio.app/docs/components
|
153 |
"""
|
|
|
4 |
|
5 |
|
6 |
@dataclass
|
7 |
+
class WhisperParameters:
|
8 |
model_size: gr.Dropdown
|
9 |
lang: gr.Dropdown
|
10 |
is_translate: gr.Checkbox
|
|
|
25 |
min_silence_duration_ms: gr.Number
|
26 |
window_size_sample: gr.Number
|
27 |
speech_pad_ms: gr.Number
|
28 |
+
chunk_length_s: gr.Number
|
29 |
+
batch_size: gr.Number
|
30 |
"""
|
31 |
A data class for Gradio components of the Whisper Parameters. Use "before" Gradio pre-processing.
|
32 |
+
This data class is used to mitigate the key-value problem between Gradio components and function parameters.
|
33 |
+
Related Gradio issue: https://github.com/gradio-app/gradio/issues/2471
|
34 |
See more about Gradio pre-processing: https://www.gradio.app/docs/components
|
35 |
|
36 |
Attributes
|
|
|
115 |
|
116 |
speech_pad_ms: gr.Number
|
117 |
This parameter is related with Silero VAD. Final speech chunks are padded by speech_pad_ms each side
|
118 |
+
|
119 |
+
chunk_length_s: gr.Number
|
120 |
+
This parameter is related with insanely-fast-whisper pipe.
|
121 |
+
Maximum length of each chunk
|
122 |
+
|
123 |
+
batch_size: gr.Number
|
124 |
+
This parameter is related with insanely-fast-whisper pipe. Batch size to pass to the pipe
|
125 |
"""
|
126 |
|
127 |
def to_list(self) -> list:
|
128 |
"""
|
129 |
+
Converts the data class attributes into a list, Use in Gradio UI before Gradio pre-processing.
|
130 |
See more about Gradio pre-processing: : https://www.gradio.app/docs/components
|
131 |
|
132 |
Returns
|
|
|
135 |
"""
|
136 |
return [getattr(self, f.name) for f in fields(self)]
|
137 |
|
138 |
+
@staticmethod
|
139 |
+
def post_process(*args) -> 'WhisperValues':
|
140 |
+
"""
|
141 |
+
To use Whisper parameters in function after Gradio post-processing.
|
142 |
+
See more about Gradio post-processing: : https://www.gradio.app/docs/components
|
143 |
+
|
144 |
+
Returns
|
145 |
+
----------
|
146 |
+
WhisperValues
|
147 |
+
Data class that has values of parameters
|
148 |
+
"""
|
149 |
+
return WhisperValues(
|
150 |
+
model_size=args[0],
|
151 |
+
lang=args[1],
|
152 |
+
is_translate=args[2],
|
153 |
+
beam_size=args[3],
|
154 |
+
log_prob_threshold=args[4],
|
155 |
+
no_speech_threshold=args[5],
|
156 |
+
compute_type=args[6],
|
157 |
+
best_of=args[7],
|
158 |
+
patience=args[8],
|
159 |
+
condition_on_previous_text=args[9],
|
160 |
+
initial_prompt=args[10],
|
161 |
+
temperature=args[11],
|
162 |
+
compression_ratio_threshold=args[12],
|
163 |
+
vad_filter=args[13],
|
164 |
+
threshold=args[14],
|
165 |
+
min_speech_duration_ms=args[15],
|
166 |
+
max_speech_duration_s=args[16],
|
167 |
+
min_silence_duration_ms=args[17],
|
168 |
+
window_size_samples=args[18],
|
169 |
+
speech_pad_ms=args[19],
|
170 |
+
chunk_length_s=args[20],
|
171 |
+
batch_size=args[21]
|
172 |
+
)
|
173 |
+
|
174 |
|
175 |
@dataclass
|
176 |
class WhisperValues:
|
|
|
194 |
min_silence_duration_ms: int
|
195 |
window_size_samples: int
|
196 |
speech_pad_ms: int
|
197 |
+
chunk_length_s: int
|
198 |
+
batch_size: int
|
199 |
"""
|
200 |
+
A data class to use Whisper parameters.
|
|
|
201 |
"""
|
user-start-webui.bat
CHANGED
@@ -12,6 +12,7 @@ set API_OPEN=
|
|
12 |
set WHISPER_TYPE=
|
13 |
set WHISPER_MODEL_DIR=
|
14 |
set FASTER_WHISPER_MODEL_DIR=
|
|
|
15 |
|
16 |
|
17 |
if not "%SERVER_NAME%"=="" (
|
@@ -47,7 +48,10 @@ if not "%WHISPER_MODEL_DIR%"=="" (
|
|
47 |
if not "%FASTER_WHISPER_MODEL_DIR%"=="" (
|
48 |
set FASTER_WHISPER_MODEL_DIR_ARG=--faster_whisper_model_dir "%FASTER_WHISPER_MODEL_DIR%"
|
49 |
)
|
|
|
|
|
|
|
50 |
|
51 |
:: Call the original .bat script with optional arguments
|
52 |
-
start-webui.bat %SERVER_NAME_ARG% %SERVER_PORT_ARG% %USERNAME_ARG% %PASSWORD_ARG% %SHARE_ARG% %THEME_ARG% %API_OPEN% %WHISPER_TYPE_ARG% %WHISPER_MODEL_DIR_ARG% %FASTER_WHISPER_MODEL_DIR_ARG%
|
53 |
pause
|
|
|
12 |
set WHISPER_TYPE=
|
13 |
set WHISPER_MODEL_DIR=
|
14 |
set FASTER_WHISPER_MODEL_DIR=
|
15 |
+
set INSANELY_FAST_WHISPER_MODEL_DIR=
|
16 |
|
17 |
|
18 |
if not "%SERVER_NAME%"=="" (
|
|
|
48 |
if not "%FASTER_WHISPER_MODEL_DIR%"=="" (
|
49 |
set FASTER_WHISPER_MODEL_DIR_ARG=--faster_whisper_model_dir "%FASTER_WHISPER_MODEL_DIR%"
|
50 |
)
|
51 |
+
if not "%INSANELY_FAST_WHISPER_MODEL_DIR%"=="" (
|
52 |
+
set INSANELY_FAST_WHISPER_MODEL_DIR_ARG=--insanely_fast_whisper_model_dir "%INSANELY_FAST_WHISPER_MODEL_DIR%"
|
53 |
+
)
|
54 |
|
55 |
:: Call the original .bat script with optional arguments
|
56 |
+
start-webui.bat %SERVER_NAME_ARG% %SERVER_PORT_ARG% %USERNAME_ARG% %PASSWORD_ARG% %SHARE_ARG% %THEME_ARG% %API_OPEN% %WHISPER_TYPE_ARG% %WHISPER_MODEL_DIR_ARG% %FASTER_WHISPER_MODEL_DIR_ARG% %INSANELY_FAST_WHISPER_MODEL_DIR_ARG%
|
57 |
pause
|