Whisper-WebUI / modules /whisper /insanely_fast_whisper_inference.py
jhj0517
Apply Segment model to the pipeline
ddbe0b6
raw
history blame
7.38 kB
import os
import time
import numpy as np
from typing import BinaryIO, Union, Tuple, List
import torch
from transformers import pipeline
from transformers.utils import is_flash_attn_2_available
import gradio as gr
from huggingface_hub import hf_hub_download
import whisper
from rich.progress import Progress, TimeElapsedColumn, BarColumn, TextColumn
from argparse import Namespace
from modules.utils.paths import (INSANELY_FAST_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, UVR_MODELS_DIR, OUTPUT_DIR)
from modules.whisper.data_classes import *
from modules.whisper.base_transcription_pipeline import BaseTranscriptionPipeline
class InsanelyFastWhisperInference(BaseTranscriptionPipeline):
def __init__(self,
model_dir: str = INSANELY_FAST_WHISPER_MODELS_DIR,
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
uvr_model_dir: str = UVR_MODELS_DIR,
output_dir: str = OUTPUT_DIR,
):
super().__init__(
model_dir=model_dir,
output_dir=output_dir,
diarization_model_dir=diarization_model_dir,
uvr_model_dir=uvr_model_dir
)
self.model_dir = model_dir
os.makedirs(self.model_dir, exist_ok=True)
openai_models = whisper.available_models()
distil_models = ["distil-large-v2", "distil-large-v3", "distil-medium.en", "distil-small.en"]
self.available_models = openai_models + distil_models
def transcribe(self,
audio: Union[str, np.ndarray, torch.Tensor],
progress: gr.Progress = gr.Progress(),
*whisper_params,
) -> Tuple[List[Segment], float]:
"""
transcribe method for faster-whisper.
Parameters
----------
audio: Union[str, BinaryIO, np.ndarray]
Audio path or file binary or Audio numpy array
progress: gr.Progress
Indicator to show progress directly in gradio.
*whisper_params: tuple
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
Returns
----------
segments_result: List[Segment]
list of Segment that includes start, end timestamps and transcribed text
elapsed_time: float
elapsed time for transcription
"""
start_time = time.time()
params = WhisperParams.from_list(list(whisper_params))
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
self.update_model(params.model_size, params.compute_type, progress)
progress(0, desc="Transcribing...Progress is not shown in insanely-fast-whisper.")
with Progress(
TextColumn("[progress.description]{task.description}"),
BarColumn(style="yellow1", pulse_style="white"),
TimeElapsedColumn(),
) as progress:
progress.add_task("[yellow]Transcribing...", total=None)
kwargs = {
"no_speech_threshold": params.no_speech_threshold,
"temperature": params.temperature,
"compression_ratio_threshold": params.compression_ratio_threshold,
"logprob_threshold": params.log_prob_threshold,
}
if self.current_model_size.endswith(".en"):
pass
else:
kwargs["language"] = params.lang
kwargs["task"] = "translate" if params.is_translate else "transcribe"
segments = self.model(
inputs=audio,
return_timestamps=True,
chunk_length_s=params.chunk_length,
batch_size=params.batch_size,
generate_kwargs=kwargs
)
segments_result = []
for item in segments["chunks"]:
start, end = item["timestamp"][0], item["timestamp"][1]
if end is None:
end = start
segments_result.append(Segment(
text=item["text"],
start=start,
end=end
))
elapsed_time = time.time() - start_time
return segments_result, elapsed_time
def update_model(self,
model_size: str,
compute_type: str,
progress: gr.Progress = gr.Progress(),
):
"""
Update current model setting
Parameters
----------
model_size: str
Size of whisper model
compute_type: str
Compute type for transcription.
see more info : https://opennmt.net/CTranslate2/quantization.html
progress: gr.Progress
Indicator to show progress directly in gradio.
"""
progress(0, desc="Initializing Model..")
model_path = os.path.join(self.model_dir, model_size)
if not os.path.isdir(model_path) or not os.listdir(model_path):
self.download_model(
model_size=model_size,
download_root=model_path,
progress=progress
)
self.current_compute_type = compute_type
self.current_model_size = model_size
self.model = pipeline(
"automatic-speech-recognition",
model=os.path.join(self.model_dir, model_size),
torch_dtype=self.current_compute_type,
device=self.device,
model_kwargs={"attn_implementation": "flash_attention_2"} if is_flash_attn_2_available() else {"attn_implementation": "sdpa"},
)
@staticmethod
def format_result(
transcribed_result: dict
) -> List[dict]:
"""
Format the transcription result of insanely_fast_whisper as the same with other implementation.
Parameters
----------
transcribed_result: dict
Transcription result of the insanely_fast_whisper
Returns
----------
result: List[dict]
Formatted result as the same with other implementation
"""
result = transcribed_result["chunks"]
for item in result:
start, end = item["timestamp"][0], item["timestamp"][1]
if end is None:
end = start
item["start"] = start
item["end"] = end
return result
@staticmethod
def download_model(
model_size: str,
download_root: str,
progress: gr.Progress
):
progress(0, 'Initializing model..')
print(f'Downloading {model_size} to "{download_root}"....')
os.makedirs(download_root, exist_ok=True)
download_list = [
"model.safetensors",
"config.json",
"generation_config.json",
"preprocessor_config.json",
"tokenizer.json",
"tokenizer_config.json",
"added_tokens.json",
"special_tokens_map.json",
"vocab.json",
]
if model_size.startswith("distil"):
repo_id = f"distil-whisper/{model_size}"
else:
repo_id = f"openai/whisper-{model_size}"
for item in download_list:
hf_hub_download(repo_id=repo_id, filename=item, local_dir=download_root)