File size: 1,501 Bytes
b30c9c5
 
4c4ecfe
b30c9c5
 
 
 
 
88d2794
b30c9c5
 
 
88d2794
 
 
 
b30c9c5
 
 
4c4ecfe
 
 
b30c9c5
 
 
 
 
 
 
 
 
 
 
88d2794
 
 
 
b30c9c5
 
 
4c4ecfe
 
 
b30c9c5
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from modules.utils.paths import *
from modules.whisper.whisper_factory import WhisperFactory
from modules.whisper.data_classes import *
from test_config import *
from test_transcription import download_file, test_transcribe

import gradio as gr
import pytest
import torch
import os


@pytest.mark.skipif(
    not is_cuda_available(),
    reason="Skipping because the test only works on GPU"
)
@pytest.mark.parametrize(
    "whisper_type,vad_filter,bgm_separation,diarization",
    [
        (WhisperImpl.WHISPER.value, False, True, False),
        (WhisperImpl.FASTER_WHISPER.value, False, True, False),
        (WhisperImpl.INSANELY_FAST_WHISPER.value, False, True, False)
    ]
)
def test_bgm_separation_pipeline(
    whisper_type: str,
    vad_filter: bool,
    bgm_separation: bool,
    diarization: bool,
):
    test_transcribe(whisper_type, vad_filter, bgm_separation, diarization)


@pytest.mark.skipif(
    not is_cuda_available(),
    reason="Skipping because the test only works on GPU"
)
@pytest.mark.parametrize(
    "whisper_type,vad_filter,bgm_separation,diarization",
    [
        (WhisperImpl.WHISPER.value, True, True, False),
        (WhisperImpl.FASTER_WHISPER.value, True, True, False),
        (WhisperImpl.INSANELY_FAST_WHISPER.value, True, True, False)
    ]
)
def test_bgm_separation_with_vad_pipeline(
    whisper_type: str,
    vad_filter: bool,
    bgm_separation: bool,
    diarization: bool,
):
    test_transcribe(whisper_type, vad_filter, bgm_separation, diarization)