File size: 29,058 Bytes
ff5aa27
56d7f1f
 
 
8762e3a
db2039e
b10d03b
43820de
 
ff5aa27
e6158a2
3a1a0a3
b065a65
ff5aa27
56d7f1f
 
 
f88b351
fd67237
 
e18f92a
56d7f1f
e6158a2
a0164a7
fd67237
 
 
6f97cc2
fd67237
 
6f97cc2
 
 
8f9e3e1
 
b10d03b
 
fd67237
 
 
 
 
56d7f1f
 
 
 
 
 
ff5aa27
56d7f1f
 
248f6d8
56d7f1f
7019901
56d7f1f
7019901
ff5aa27
56d7f1f
 
43820de
 
56d7f1f
 
 
 
d2ebfa4
56d7f1f
0fdaf30
56d7f1f
 
 
68d15b9
56d7f1f
ed53f6a
167d34d
ed53f6a
83a3dff
 
 
 
d8dfcf0
e3a6426
 
c661883
c3b532a
3a1a0a3
3aeef88
171d562
 
 
 
 
 
 
 
 
 
 
56d7f1f
 
 
63d0035
 
d2ebfa4
56d7f1f
b065a65
171d562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
074b1fc
56d7f1f
b065a65
d2ebfa4
56d7f1f
 
 
 
 
 
 
 
 
 
 
 
 
0fdaf30
56d7f1f
 
 
68d15b9
56d7f1f
 
167d34d
 
 
83a3dff
 
 
 
d8dfcf0
e3a6426
 
c661883
c3b532a
3a1a0a3
3aeef88
171d562
 
 
 
 
 
 
 
 
 
 
 
56d7f1f
 
 
63d0035
 
d2ebfa4
56d7f1f
b065a65
171d562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56d7f1f
b065a65
d2ebfa4
56d7f1f
 
 
 
 
 
 
 
 
0fdaf30
56d7f1f
 
 
68d15b9
56d7f1f
 
83a3dff
 
 
 
d8dfcf0
e3a6426
 
c661883
c3b532a
3a1a0a3
171d562
 
 
 
 
 
 
 
 
 
 
 
56d7f1f
 
 
63d0035
 
d2ebfa4
56d7f1f
b065a65
171d562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56d7f1f
b065a65
d2ebfa4
56d7f1f
 
 
 
 
d2ebfa4
56d7f1f
 
e6158a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63d0035
 
e6158a2
 
 
 
 
 
 
 
 
 
 
 
56d7f1f
c603464
56d7f1f
 
 
 
 
167d34d
 
 
56d7f1f
 
 
63d0035
 
d2ebfa4
56d7f1f
 
 
 
167d34d
d2ebfa4
 
56d7f1f
 
 
 
440ffe1
 
56d7f1f
440ffe1
 
 
 
 
 
 
1aa16bb
 
9953f5b
0cd08e6
440ffe1
43820de
 
94f2c1b
56d7f1f
fd67237
0825672
94f2c1b
 
1aa16bb
0825672
 
f88b351
582adb3
135355d
25c9e51
 
6f97cc2
56d7f1f
43820de
56d7f1f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import gradio as gr
import os
import argparse

from modules.whisper_Inference import WhisperInference
from modules.faster_whisper_inference import FasterWhisperInference
from modules.insanely_fast_whisper_inference import InsanelyFastWhisperInference
from modules.nllb_inference import NLLBInference
from ui.htmls import *
from modules.youtube_manager import get_ytmetas
from modules.deepl_api import DeepLAPI
from modules.whisper_parameter import *


class App:
    def __init__(self, args):
        self.args = args
        self.app = gr.Blocks(css=CSS, theme=self.args.theme)
        self.whisper_inf = self.init_whisper()
        print(f"Use \"{self.args.whisper_type}\" implementation")
        print(f"Device \"{self.whisper_inf.device}\" is detected")
        self.nllb_inf = NLLBInference()
        self.deepl_api = DeepLAPI()

    def init_whisper(self):
        whisper_type = self.args.whisper_type.lower().strip()

        if whisper_type in ["faster_whisper", "faster-whisper", "fasterwhisper"]:
            whisper_inf = FasterWhisperInference()
            whisper_inf.model_dir = self.args.faster_whisper_model_dir
        elif whisper_type in ["whisper"]:
            whisper_inf = WhisperInference()
            whisper_inf.model_dir = self.args.whisper_model_dir
        elif whisper_type in ["insanely_fast_whisper", "insanely-fast-whisper", "insanelyfastwhisper",
                              "insanely_faster_whisper", "insanely-faster-whisper", "insanelyfasterwhisper"]:
            whisper_inf = InsanelyFastWhisperInference()
            whisper_inf.model_dir = self.args.insanely_fast_whisper_model_dir
        else:
            whisper_inf = FasterWhisperInference()
            whisper_inf.model_dir = self.args.faster_whisper_model_dir
        return whisper_inf

    @staticmethod
    def open_folder(folder_path: str):
        if os.path.exists(folder_path):
            os.system(f"start {folder_path}")
        else:
            print(f"The folder {folder_path} does not exist.")

    @staticmethod
    def on_change_models(model_size: str):
        translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
        if model_size not in translatable_model:
            return gr.Checkbox(visible=False, value=False, interactive=False)
        else:
            return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True)

    def launch(self):
        with self.app:
            with gr.Row():
                with gr.Column():
                    gr.Markdown(MARKDOWN, elem_id="md_project")
            with gr.Tabs():
                with gr.TabItem("File"):  # tab1
                    with gr.Row():
                        input_file = gr.Files(type="filepath", label="Upload File here")
                    with gr.Row():
                        dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2",
                                               label="Model")
                        dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
                                              value="Automatic Detection", label="Language")
                        dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
                    with gr.Row():
                        cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
                    with gr.Row():
                        cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename", interactive=True)
                    with gr.Accordion("Advanced_Parameters", open=False):
                        nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
                        nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
                        nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
                        dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True)
                        nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
                        nb_patience = gr.Number(label="Patience", value=1, interactive=True)
                        cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True, interactive=True)
                        tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
                        sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True)
                        nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4, interactive=True)
                    with gr.Accordion("VAD Options", open=False, visible=isinstance(self.whisper_inf, FasterWhisperInference)):
                        cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
                        sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5)
                        nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
                        nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
                        nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
                        nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
                        nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
                    with gr.Accordion("Insanely Fast Whisper Parameters", open=False, visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
                        nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
                        nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
                    with gr.Row():
                        btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
                    with gr.Row():
                        tb_indicator = gr.Textbox(label="Output", scale=5)
                        files_subtitles = gr.Files(label="Downloadable output file", scale=3, interactive=False)
                        btn_openfolder = gr.Button('πŸ“‚', scale=1)

                    params = [input_file, dd_file_format, cb_timestamp]
                    whisper_params = WhisperParameters(model_size=dd_model,
                                                       lang=dd_lang,
                                                       is_translate=cb_translate,
                                                       beam_size=nb_beam_size,
                                                       log_prob_threshold=nb_log_prob_threshold,
                                                       no_speech_threshold=nb_no_speech_threshold,
                                                       compute_type=dd_compute_type,
                                                       best_of=nb_best_of,
                                                       patience=nb_patience,
                                                       condition_on_previous_text=cb_condition_on_previous_text,
                                                       initial_prompt=tb_initial_prompt,
                                                       temperature=sd_temperature,
                                                       compression_ratio_threshold=nb_compression_ratio_threshold,
                                                       vad_filter=cb_vad_filter,
                                                       threshold=sd_threshold,
                                                       min_speech_duration_ms=nb_min_speech_duration_ms,
                                                       max_speech_duration_s=nb_max_speech_duration_s,
                                                       min_silence_duration_ms=nb_min_silence_duration_ms,
                                                       window_size_sample=nb_window_size_sample,
                                                       speech_pad_ms=nb_speech_pad_ms,
                                                       chunk_length_s=nb_chunk_length_s,
                                                       batch_size=nb_batch_size)

                    btn_run.click(fn=self.whisper_inf.transcribe_file,
                                  inputs=params + whisper_params.to_list(),
                                  outputs=[tb_indicator, files_subtitles])
                    btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
                    dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])

                with gr.TabItem("Youtube"):  # tab2
                    with gr.Row():
                        tb_youtubelink = gr.Textbox(label="Youtube Link")
                    with gr.Row(equal_height=True):
                        with gr.Column():
                            img_thumbnail = gr.Image(label="Youtube Thumbnail")
                        with gr.Column():
                            tb_title = gr.Label(label="Youtube Title")
                            tb_description = gr.Textbox(label="Youtube Description", max_lines=15)
                    with gr.Row():
                        dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2",
                                               label="Model")
                        dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
                                              value="Automatic Detection", label="Language")
                        dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
                    with gr.Row():
                        cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
                    with gr.Row():
                        cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
                                                   interactive=True)
                    with gr.Accordion("Advanced_Parameters", open=False):
                        nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
                        nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
                        nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
                        dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True)
                        nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
                        nb_patience = gr.Number(label="Patience", value=1, interactive=True)
                        cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True, interactive=True)
                        tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
                        sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True)
                        nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4, interactive=True)
                    with gr.Accordion("VAD Options", open=False, visible=isinstance(self.whisper_inf, FasterWhisperInference)):
                        cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
                        sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5)
                        nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
                        nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
                        nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
                        nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
                        nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
                    with gr.Accordion("Insanely Fast Whisper Parameters", open=False,
                                      visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
                        nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
                        nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
                    with gr.Row():
                        btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
                    with gr.Row():
                        tb_indicator = gr.Textbox(label="Output", scale=5)
                        files_subtitles = gr.Files(label="Downloadable output file", scale=3)
                        btn_openfolder = gr.Button('πŸ“‚', scale=1)

                    params = [tb_youtubelink, dd_file_format, cb_timestamp]
                    whisper_params = WhisperParameters(model_size=dd_model,
                                                       lang=dd_lang,
                                                       is_translate=cb_translate,
                                                       beam_size=nb_beam_size,
                                                       log_prob_threshold=nb_log_prob_threshold,
                                                       no_speech_threshold=nb_no_speech_threshold,
                                                       compute_type=dd_compute_type,
                                                       best_of=nb_best_of,
                                                       patience=nb_patience,
                                                       condition_on_previous_text=cb_condition_on_previous_text,
                                                       initial_prompt=tb_initial_prompt,
                                                       temperature=sd_temperature,
                                                       compression_ratio_threshold=nb_compression_ratio_threshold,
                                                       vad_filter=cb_vad_filter,
                                                       threshold=sd_threshold,
                                                       min_speech_duration_ms=nb_min_speech_duration_ms,
                                                       max_speech_duration_s=nb_max_speech_duration_s,
                                                       min_silence_duration_ms=nb_min_silence_duration_ms,
                                                       window_size_sample=nb_window_size_sample,
                                                       speech_pad_ms=nb_speech_pad_ms,
                                                       chunk_length_s=nb_chunk_length_s,
                                                       batch_size=nb_batch_size)

                    btn_run.click(fn=self.whisper_inf.transcribe_youtube,
                                  inputs=params + whisper_params.to_list(),
                                  outputs=[tb_indicator, files_subtitles])
                    tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
                                          outputs=[img_thumbnail, tb_title, tb_description])
                    btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
                    dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])

                with gr.TabItem("Mic"):  # tab3
                    with gr.Row():
                        mic_input = gr.Microphone(label="Record with Mic", type="filepath", interactive=True)
                    with gr.Row():
                        dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2",
                                               label="Model")
                        dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
                                              value="Automatic Detection", label="Language")
                        dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
                    with gr.Row():
                        cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
                    with gr.Accordion("Advanced_Parameters", open=False):
                        nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
                        nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
                        nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
                        dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True)
                        nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
                        nb_patience = gr.Number(label="Patience", value=1, interactive=True)
                        cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True, interactive=True)
                        tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
                        sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True)
                    with gr.Accordion("VAD Options", open=False, visible=isinstance(self.whisper_inf, FasterWhisperInference)):
                        cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
                        sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5)
                        nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
                        nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
                        nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
                        nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
                        nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
                    with gr.Accordion("Insanely Fast Whisper Parameters", open=False,
                                      visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
                        nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
                        nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
                    with gr.Row():
                        btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
                    with gr.Row():
                        tb_indicator = gr.Textbox(label="Output", scale=5)
                        files_subtitles = gr.Files(label="Downloadable output file", scale=3)
                        btn_openfolder = gr.Button('πŸ“‚', scale=1)

                    params = [mic_input, dd_file_format]
                    whisper_params = WhisperParameters(model_size=dd_model,
                                                       lang=dd_lang,
                                                       is_translate=cb_translate,
                                                       beam_size=nb_beam_size,
                                                       log_prob_threshold=nb_log_prob_threshold,
                                                       no_speech_threshold=nb_no_speech_threshold,
                                                       compute_type=dd_compute_type,
                                                       best_of=nb_best_of,
                                                       patience=nb_patience,
                                                       condition_on_previous_text=cb_condition_on_previous_text,
                                                       initial_prompt=tb_initial_prompt,
                                                       temperature=sd_temperature,
                                                       compression_ratio_threshold=nb_compression_ratio_threshold,
                                                       vad_filter=cb_vad_filter,
                                                       threshold=sd_threshold,
                                                       min_speech_duration_ms=nb_min_speech_duration_ms,
                                                       max_speech_duration_s=nb_max_speech_duration_s,
                                                       min_silence_duration_ms=nb_min_silence_duration_ms,
                                                       window_size_sample=nb_window_size_sample,
                                                       speech_pad_ms=nb_speech_pad_ms,
                                                       chunk_length_s=nb_chunk_length_s,
                                                       batch_size=nb_batch_size)

                    btn_run.click(fn=self.whisper_inf.transcribe_mic,
                                  inputs=params + whisper_params.to_list(),
                                  outputs=[tb_indicator, files_subtitles])
                    btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
                    dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])

                with gr.TabItem("T2T Translation"):  # tab 4
                    with gr.Row():
                        file_subs = gr.Files(type="filepath", label="Upload Subtitle Files to translate here",
                                             file_types=['.vtt', '.srt'])

                    with gr.TabItem("DeepL API"):  # sub tab1
                        with gr.Row():
                            tb_authkey = gr.Textbox(label="Your Auth Key (API KEY)",
                                                    value="")
                        with gr.Row():
                            dd_deepl_sourcelang = gr.Dropdown(label="Source Language", value="Automatic Detection",
                                                              choices=list(
                                                                  self.deepl_api.available_source_langs.keys()))
                            dd_deepl_targetlang = gr.Dropdown(label="Target Language", value="English",
                                                              choices=list(
                                                                  self.deepl_api.available_target_langs.keys()))
                        with gr.Row():
                            cb_deepl_ispro = gr.Checkbox(label="Pro User?", value=False)
                        with gr.Row():
                            btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
                        with gr.Row():
                            tb_indicator = gr.Textbox(label="Output", scale=5)
                            files_subtitles = gr.Files(label="Downloadable output file", scale=3)
                            btn_openfolder = gr.Button('πŸ“‚', scale=1)

                    btn_run.click(fn=self.deepl_api.translate_deepl,
                                  inputs=[tb_authkey, file_subs, dd_deepl_sourcelang, dd_deepl_targetlang,
                                          cb_deepl_ispro],
                                  outputs=[tb_indicator, files_subtitles])

                    btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")),
                                         inputs=None,
                                         outputs=None)

                    with gr.TabItem("NLLB"):  # sub tab2
                        with gr.Row():
                            dd_nllb_model = gr.Dropdown(label="Model", value="facebook/nllb-200-1.3B",
                                                        choices=self.nllb_inf.available_models)
                            dd_nllb_sourcelang = gr.Dropdown(label="Source Language",
                                                             choices=self.nllb_inf.available_source_langs)
                            dd_nllb_targetlang = gr.Dropdown(label="Target Language",
                                                             choices=self.nllb_inf.available_target_langs)
                        with gr.Row():
                            cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
                                                       interactive=True)
                        with gr.Row():
                            btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
                        with gr.Row():
                            tb_indicator = gr.Textbox(label="Output", scale=5)
                            files_subtitles = gr.Files(label="Downloadable output file", scale=3)
                            btn_openfolder = gr.Button('πŸ“‚', scale=1)
                        with gr.Column():
                            md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")

                    btn_run.click(fn=self.nllb_inf.translate_file,
                                  inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang, cb_timestamp],
                                  outputs=[tb_indicator, files_subtitles])

                    btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")),
                                         inputs=None,
                                         outputs=None)

        # Launch the app with optional gradio settings
        launch_args = {}
        if self.args.share:
            launch_args['share'] = self.args.share
        if self.args.server_name:
            launch_args['server_name'] = self.args.server_name
        if self.args.server_port:
            launch_args['server_port'] = self.args.server_port
        if self.args.username and self.args.password:
            launch_args['auth'] = (self.args.username, self.args.password)
        if self.args.root_path:
            launch_args['root_path'] = self.args.root_path
        launch_args['inbrowser'] = True

        self.app.queue(api_open=False).launch(**launch_args)


# Create the parser for command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--whisper_type', type=str, default="faster-whisper", help='A type of the whisper implementation between: ["whisper", "faster-whisper"]')
parser.add_argument('--share', type=bool, default=False, nargs='?', const=True, help='Gradio share value')
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
parser.add_argument('--root_path', type=str, default=None, help='Gradio root path')
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username')
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
parser.add_argument('--colab', type=bool, default=False, nargs='?', const=True, help='Is colab user or not')
parser.add_argument('--api_open', type=bool, default=False, nargs='?', const=True, help='enable api or not')
parser.add_argument('--whisper_model_dir', type=str, default=os.path.join("models", "Whisper"), help='Directory path of the whisper model')
parser.add_argument('--faster_whisper_model_dir', type=str, default=os.path.join("models", "Whisper", "faster-whisper"), help='Directory path of the faster-whisper model')
parser.add_argument('--insanely_fast_whisper_model_dir', type=str, default=os.path.join("models", "Whisper", "insanely-fast-whisper"), help='Directory path of the insanely-fast-whisper model')
_args = parser.parse_args()

if __name__ == "__main__":
    app = App(args=_args)
    app.launch()