File size: 4,495 Bytes
63ab978
 
a63d493
18ab700
a63d493
 
17e1e38
201b316
63ab978
8126fce
a3de454
ccbfe76
9cf2e86
2ff01cb
a3de454
b2bb752
7d9eec3
 
8126fce
7d9eec3
b2bb752
e76c01c
5633565
201b316
8126fce
 
e76c01c
a63d493
 
 
732a962
9f69aa4
ddbe0b6
a63d493
9f69aa4
a63d493
 
 
9f69aa4
a63d493
 
 
9f69aa4
ca8ee6a
a63d493
 
 
ddbe0b6
 
a63d493
 
 
 
501c404
9f69aa4
 
 
 
a63d493
 
 
ddbe0b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a63d493
ddbe0b6
a63d493
 
9f69aa4
 
 
732a962
9f69aa4
a63d493
9f69aa4
 
 
 
 
 
 
 
 
 
 
a63d493
9f69aa4
 
 
 
 
 
6d9d096
e76c01c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import whisper
import gradio as gr
import time
from typing import BinaryIO, Union, Tuple, List
import numpy as np
import torch
import os
from argparse import Namespace

from modules.utils.paths import (WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, UVR_MODELS_DIR)
from modules.whisper.base_transcription_pipeline import BaseTranscriptionPipeline
from modules.whisper.data_classes import *


class WhisperInference(BaseTranscriptionPipeline):
    def __init__(self,
                 model_dir: str = WHISPER_MODELS_DIR,
                 diarization_model_dir: str = DIARIZATION_MODELS_DIR,
                 uvr_model_dir: str = UVR_MODELS_DIR,
                 output_dir: str = OUTPUT_DIR,
                 ):
        super().__init__(
            model_dir=model_dir,
            output_dir=output_dir,
            diarization_model_dir=diarization_model_dir,
            uvr_model_dir=uvr_model_dir
        )

    def transcribe(self,
                   audio: Union[str, np.ndarray, torch.Tensor],
                   progress: gr.Progress = gr.Progress(),
                   *whisper_params,
                   ) -> Tuple[List[Segment], float]:
        """
        transcribe method for faster-whisper.

        Parameters
        ----------
        audio: Union[str, BinaryIO, np.ndarray]
            Audio path or file binary or Audio numpy array
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *whisper_params: tuple
            Parameters related with whisper. This will be dealt with "WhisperParameters" data class

        Returns
        ----------
        segments_result: List[Segment]
            list of Segment that includes start, end timestamps and transcribed text
        elapsed_time: float
            elapsed time for transcription
        """
        start_time = time.time()
        params = WhisperParams.from_list(list(whisper_params))

        if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
            self.update_model(params.model_size, params.compute_type, progress)

        def progress_callback(progress_value):
            progress(progress_value, desc="Transcribing..")

        result = self.model.transcribe(audio=audio,
                                       language=params.lang,
                                       verbose=False,
                                       beam_size=params.beam_size,
                                       logprob_threshold=params.log_prob_threshold,
                                       no_speech_threshold=params.no_speech_threshold,
                                       task="translate" if params.is_translate and self.current_model_size in self.translatable_models else "transcribe",
                                       fp16=True if params.compute_type == "float16" else False,
                                       best_of=params.best_of,
                                       patience=params.patience,
                                       temperature=params.temperature,
                                       compression_ratio_threshold=params.compression_ratio_threshold,
                                       progress_callback=progress_callback,)["segments"]
        segments_result = []
        for segment in result:
            segments_result.append(Segment(
                start=segment["start"],
                end=segment["end"],
                text=segment["text"]
            ))

        elapsed_time = time.time() - start_time
        return segments_result, elapsed_time

    def update_model(self,
                     model_size: str,
                     compute_type: str,
                     progress: gr.Progress = gr.Progress(),
                     ):
        """
        Update current model setting

        Parameters
        ----------
        model_size: str
            Size of whisper model
        compute_type: str
            Compute type for transcription.
            see more info : https://opennmt.net/CTranslate2/quantization.html
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        """
        progress(0, desc="Initializing Model..")
        self.current_compute_type = compute_type
        self.current_model_size = model_size
        self.model = whisper.load_model(
            name=model_size,
            device=self.device,
            download_root=self.model_dir
        )