jerpint's picture
fix GPU decorator, add missing arg
4a6a9ac
raw
history blame
4.63 kB
from PIL import Image
import numpy as np
import gradio as gr
import spaces
import torch
from tqdm import tqdm
from controlnet import QRControlNet
from game_of_life import GameOfLife
from utils import resize_image, generate_image_from_grid
@spaces.GPU
def init_controlnet(device: str) -> QRControlNet:
return QRControlNet(device=device)
def generate_all_images(
gol_grids: list[np.array],
source_image: Image,
num_inference_steps: int,
controlnet_conditioning_scale: float,
strength: float,
prompt: str,
negative_prompt: str,
seed: int,
guidance_scale: float,
img_size: int,
):
controlnet_conditioning_scale = float(controlnet_conditioning_scale)
source_image = resize_image(source_image, resolution=img_size)
images = []
for grid in tqdm(gol_grids):
grid_inverse = 1 - grid # invert the grid for controlnet
grid_inverse_image = generate_image_from_grid(grid_inverse, img_size=img_size)
image = controlnet.generate_image(
source_image=source_image,
control_image=grid_inverse_image,
num_inference_steps=num_inference_steps,
controlnet_conditioning_scale=controlnet_conditioning_scale,
strength=strength,
prompt=prompt,
negative_prompt=negative_prompt,
seed=seed,
guidance_scale=guidance_scale,
img_size=img_size,
)
images.append(image)
return images
def make_gif(images: list[Image.Image], gif_path):
images[0].save(
gif_path,
save_all=True,
append_images=images[1:],
duration=200, # Duration between frames in milliseconds
loop=0,
) # Loop forever
return gif_path
@spaces.GPU(duration=120)
def generate(
source_image,
prompt,
negative_prompt,
seed,
num_inference_steps,
num_gol_steps,
gol_grid_dim,
img_size,
controlnet_conditioning_scale,
strength,
guidance_scale,
):
# Compute the Game of Life first
gol = GameOfLife()
gol.set_random_state(dim=(gol_grid_dim, gol_grid_dim), p=0.5, seed=seed)
gol.generate_n_steps(n=num_gol_steps)
gol_grids = gol.game_history
# Generate the gif for the original Game of Life
gol_images = [
generate_image_from_grid(grid, img_size=img_size) for grid in gol_grids
]
path_gol_gif = make_gif(gol_images, "gol_original.gif")
# Generate the gif for the ControlNet Game of Life
controlnet_images = generate_all_images(
gol_grids=gol_grids,
source_image=source_image,
num_inference_steps=num_inference_steps,
controlnet_conditioning_scale=controlnet_conditioning_scale,
strength=strength,
prompt=prompt,
negative_prompt=negative_prompt,
seed=seed,
guidance_scale=guidance_scale,
img_size=img_size,
)
path_gol_controlnet = make_gif(controlnet_images, "gol_controlnet.gif")
return path_gol_controlnet, path_gol_gif
device = "cuda"
# device = "mps"
# device = "cpu"
print(f"Using {device=}")
controlnet = init_controlnet(device=device)
source_image = gr.Image(label="Source Image", type="pil", value="sky-gol-image.jpeg")
output_controlnet = gr.Image(label="ControlNet Game of Life")
output_gol = gr.Image(label="Original Game of Life")
prompt = gr.Textbox(
label="Prompt", value="clear sky with clouds, high quality, background 4k"
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="ugly, disfigured, low quality, blurry, nsfw, qr code",
)
seed = gr.Number(label="Seed", value=42)
num_inference_steps = gr.Number(label="Controlnet Inference Steps", value=50)
num_gol_steps = gr.Slider(
label="Number of Game of Life Steps",
minimum=2,
maximum=100,
step=1,
value=40,
)
gol_grid_dim = gr.Number(
label="Game of Life Grid Dimension",
value=10,
)
img_size = gr.Number(label="Image Size (pixels)", value=512)
controlnet_conditioning_scale = gr.Slider(
label="Controlnet Conditioning Scale", minimum=0.1, maximum=10.0, value=2.0
)
strength = gr.Slider(label="Strength", minimum=0.1, maximum=1.0, value=0.9)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=100, value=20)
demo = gr.Interface(
fn=generate,
inputs=[
source_image,
prompt,
negative_prompt,
seed,
num_inference_steps,
num_gol_steps,
gol_grid_dim,
img_size,
controlnet_conditioning_scale,
strength,
guidance_scale,
],
outputs=[output_controlnet, output_gol],
)
demo.launch()