File size: 5,167 Bytes
ea2f505
 
 
 
 
 
 
 
 
 
 
 
65980b9
ea2f505
 
 
 
 
 
 
 
 
 
 
 
d9006da
 
 
 
 
 
 
ea2f505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb49b07
ea2f505
fb49b07
ea2f505
 
 
65980b9
ea2f505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2635346
65980b9
9a02202
65980b9
ea2f505
d9006da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from PIL import Image
import numpy as np
import gradio as gr
import spaces
import torch
from tqdm import tqdm

from controlnet import QRControlNet
from game_of_life import GameOfLife
from utils import resize_image, generate_image_from_grid


@spaces.GPU(duration=80)
def generate_all_images(
    gol_grids: list[np.array],
    source_image: Image,
    num_inference_steps: int,
    controlnet_conditioning_scale: float,
    strength: float,
    prompt: str,
    negative_prompt: str,
    seed: int,
    guidance_scale: float,
    img_size: int,
):
    # device = "mps"
    # device = "cpu"
    device = "cuda"
    print(f"Using {device=}")

    # Initialize the controlnet (this can take a while the first time it's run)
    controlnet = QRControlNet(device=device)

    controlnet_conditioning_scale = float(controlnet_conditioning_scale)
    source_image = resize_image(source_image, resolution=img_size)
    images = []
    for grid in tqdm(gol_grids):

        grid_inverse = 1 - grid  # invert the grid for controlnet
        grid_inverse_image = generate_image_from_grid(grid_inverse, img_size=img_size)

        image = controlnet.generate_image(
            source_image=source_image,
            control_image=grid_inverse_image,
            num_inference_steps=num_inference_steps,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            strength=strength,
            prompt=prompt,
            negative_prompt=negative_prompt,
            seed=seed,
            guidance_scale=guidance_scale,
            img_size=img_size,
        )
        images.append(image)

    return images


def make_gif(images: list[Image.Image], gif_path):
    images[0].save(
        gif_path,
        save_all=True,
        append_images=images[1:],
        duration=200,  # Duration between frames in milliseconds
        loop=0,
    )  # Loop forever
    return gif_path


def generate(
    source_image,
    prompt,
    negative_prompt,
    seed,
    num_inference_steps,
    num_gol_steps,
    gol_grid_dim,
    img_size,
    controlnet_conditioning_scale,
    strength,
    guidance_scale,
):

    # Compute the Game of Life first
    gol = GameOfLife()
    gol.set_random_state(dim=(gol_grid_dim, gol_grid_dim), p=0.5, seed=seed)
    gol.generate_n_steps(n=num_gol_steps)

    gol_grids = gol.game_history

    # Generate the gif for the original Game of Life
    gol_images = [
        generate_image_from_grid(grid, img_size=img_size) for grid in gol_grids
    ]
    path_gol_gif = make_gif(gol_images, "gol_original.gif")

    # Generate the gif for the ControlNet Game of Life
    controlnet_images = generate_all_images(
        gol_grids=gol_grids,
        source_image=source_image,
        num_inference_steps=num_inference_steps,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        strength=strength,
        prompt=prompt,
        negative_prompt=negative_prompt,
        seed=seed,
        guidance_scale=guidance_scale,
        img_size=img_size,
    )

    path_gol_controlnet = make_gif(controlnet_images, "gol_controlnet.gif")

    return path_gol_controlnet, path_gol_gif


source_image = gr.Image(label="Source Image", type="pil", value="sky-gol-image.jpeg")

output_controlnet = gr.Image(label="ControlNet Game of Life")
output_gol = gr.Image(label="Original Game of Life")
prompt = gr.Textbox(
    label="Prompt", value="clear sky with clouds, high quality, background 4k"
)
negative_prompt = gr.Textbox(
    label="Negative Prompt",
    value="ugly, disfigured, low quality, blurry, nsfw, qr code",
)
seed = gr.Number(label="Seed", value=42)
num_inference_steps = gr.Number(label="Controlnet Inference Steps per frame", value=30)
num_gol_steps = gr.Slider(
    label="Number of Game of Life Steps to Generate",
    minimum=2,
    maximum=100,
    step=1,
    value=6,
)
gol_grid_dim = gr.Number(
    label="Game of Life Grid Dimension",
    value=10,
)

img_size = gr.Number(label="Image Size (pixels)", value=512)
controlnet_conditioning_scale = gr.Slider(
    label="Controlnet Conditioning Scale", minimum=0.1, maximum=10.0, value=2.0
)
strength = gr.Slider(label="Strength", minimum=0.1, maximum=1.0, value=0.9)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=100, value=20)


demo = gr.Interface(
    fn=generate,
    inputs=[
        source_image,
        prompt,
        negative_prompt,
        seed,
        num_inference_steps,
        num_gol_steps,
        gol_grid_dim,
        img_size,
        controlnet_conditioning_scale,
        strength,
        guidance_scale,
    ],
    outputs=[output_controlnet, output_gol],
    title="ControlNet Game of Life",
    description="""Generate a Game of Life grid and then use ControlNet to enhance the image based on the grid, a reference image and a prompt.
    For more information, check out this [blog post](https://www.jerpint.io/blog/diffusion-gol/). Generating frames can be slow and eat up GPU usage, for longer runtimes, you can checkout the [colab](https://colab.research.google.com/github/jerpint/jerpint.github.io/blob/master/colabs/gol_diffusion.ipynb) implementation.
    """,
)
demo.launch(debug=True)