import gradio as gr import torch import tensorflow as tf from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer, GPT2LMHeadModel, GPT2Tokenizer import time import numpy as np from torch.nn import functional as F import os from threading import Thread print(f"Starting to load the model to memory") tok = GPT2Tokenizer.from_pretrained("ethzanalytics/ai-msgbot-gpt2-XL-dialogue") m = GPT2LMHeadModel.from_pretrained("ethzanalytics/ai-msgbot-gpt2-XL-dialogue", pad_token_id=tok.eos_token_id) generator = pipeline('text-generation', model=m, tokenizer=tok) print(f"Sucessfully loaded the model to the memory") start_message = """You are an AI called assistant.""" class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [50278, 50279, 50277, 1, 0] for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False def user(message, history): # Append the user's message to the conversation history return "", history + [[message, ""]] def chat(curr_system_message, history): # Initialize a StopOnTokens object stop = StopOnTokens() # Construct the input message string for the model by concatenating the current system message and conversation history messages = curr_system_message + \ "".join(["".join(["\nperson alpha:"+item[0], "\nperson beta:"+item[1]]) for item in history]) # Tokenize the messages string model_inputs = tok([messages], return_tensors="pt") streamer = TextIteratorStreamer( tok, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, top_p=0.95, top_k=1000, temperature=1.0, num_beams=1, stopping_criteria=StoppingCriteriaList([stop]) ) t = Thread(target=m.generate, kwargs=generate_kwargs) t.start() # print(history) # Initialize an empty string to store the generated text partial_text = "" for new_text in streamer: # print(new_text) partial_text += new_text history[-1][1] = partial_text # Yield an empty string to cleanup the message textbox and the updated conversation history yield history return partial_text with gr.Blocks() as demo: # history = gr.State([]) gr.Markdown("## StableLM-Tuned-Alpha-7b Chat") gr.HTML('''
Duplicate SpaceDuplicate the Space to skip the queue and run in a private space
''') chatbot = gr.Chatbot().style(height=500) with gr.Row(): with gr.Column(): msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box", show_label=False).style(container=False) with gr.Column(): with gr.Row(): submit = gr.Button("Submit") stop = gr.Button("Stop") clear = gr.Button("Clear") system_msg = gr.Textbox( start_message, label="System Message", interactive=False, visible=False) submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True) submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True) stop.click(fn=None, inputs=None, outputs=None, cancels=[ submit_event, submit_click_event], queue=False) clear.click(lambda: None, None, [chatbot], queue=False) demo.queue(max_size=32, concurrency_count=2) demo.launch()