Upload 3 files
Browse files- app.py +91 -0
- requirements.txt +5 -0
- style.css +57 -0
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import transformers
|
4 |
+
import re
|
5 |
+
import string
|
6 |
+
import preprocessor as pre
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
10 |
+
|
11 |
+
with open("style.css") as f:
|
12 |
+
st.markdown('<style>{}</style>'.format(f.read()), unsafe_allow_html=True)
|
13 |
+
|
14 |
+
# Preparation model and tokenizer
|
15 |
+
model_path = "ninahf1503/SA-BERTchatgptapp"
|
16 |
+
tokenizer = BertTokenizer.from_pretrained(model_path)
|
17 |
+
model = BertForSequenceClassification.from_pretrained(model_path, ignore_mismatched_sizes=True )
|
18 |
+
|
19 |
+
# Define the maximum sequence length
|
20 |
+
seq_max_length = 55
|
21 |
+
|
22 |
+
# Function to tokenizing input text
|
23 |
+
def tokenizing_text(sentence):
|
24 |
+
sentence = preprocess_text(sentence)
|
25 |
+
encoded = tokenizer.encode_plus(
|
26 |
+
sentence,
|
27 |
+
add_special_tokens=True,
|
28 |
+
max_length=seq_max_length,
|
29 |
+
truncation=True,
|
30 |
+
padding='max_length',
|
31 |
+
return_tensors='pt'
|
32 |
+
)
|
33 |
+
|
34 |
+
input_ids = encoded['input_ids']
|
35 |
+
attention_mask = encoded['attention_mask']
|
36 |
+
return input_ids, attention_mask
|
37 |
+
|
38 |
+
# Function to preprocessing input text
|
39 |
+
def preprocess_text(sentence):
|
40 |
+
re_cleansing = "@\S+|https?:\S+|http?:\S|#[A-Za-z0-9]+|^RT[\s]+|(^|\W)\d+"
|
41 |
+
for punctuation in string.punctuation:
|
42 |
+
sentence = sentence.encode().decode('unicode_escape')
|
43 |
+
sentence = re.sub(r'\n', ' ', sentence)
|
44 |
+
sentence = pre.clean(sentence)
|
45 |
+
sentence = re.sub(r'[^\w\s]', ' ', sentence)
|
46 |
+
sentence = re.sub(r'[0-9]', ' ', sentence)
|
47 |
+
sentence = re.sub(re_cleansing, ' ', sentence).strip()
|
48 |
+
sentence = sentence.replace(punctuation, '')
|
49 |
+
sentence = sentence.lower()
|
50 |
+
return sentence
|
51 |
+
|
52 |
+
# Function to predict sentiment
|
53 |
+
def predict_sentiment(input_text):
|
54 |
+
input_ids, attention_mask = tokenizing_text(input_text)
|
55 |
+
|
56 |
+
with torch.no_grad():
|
57 |
+
outputs = model(input_ids, attention_mask)
|
58 |
+
|
59 |
+
logits = outputs.logits
|
60 |
+
predict_class = torch.argmax(logits, dim=1).item()
|
61 |
+
|
62 |
+
label_sentiment = {0: "Bad", 1: "Good", 2: "Neutral"}
|
63 |
+
predict_label = label_sentiment[predict_class]
|
64 |
+
|
65 |
+
return predict_label
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
# Streamlit web app
|
70 |
+
def main():
|
71 |
+
st.title("Analisis Sentimen Aplikasi ChatGPT", anchor=False)
|
72 |
+
tweet_text = st.text_area(" ", placeholder="Enter the sentence you want to analyze", label_visibility="collapsed")
|
73 |
+
|
74 |
+
if st.button("SUBMIT"):
|
75 |
+
if tweet_text.strip() == "":
|
76 |
+
st.title("Text Input Still Empty", anchor=False)
|
77 |
+
st.info("Please fill in the sentence you want to analyze")
|
78 |
+
else:
|
79 |
+
sentiment = predict_sentiment(tweet_text)
|
80 |
+
if sentiment == "Good":
|
81 |
+
st.title("Sentiment Analysis Results", anchor=False)
|
82 |
+
st.markdown('<div style="background-color: #5d9c59; padding: 16px; border-radius: 5px; font-weight: bold; color:white;">This sentence contains a positive sentiment</div>', unsafe_allow_html=True)
|
83 |
+
elif sentiment == "Bad":
|
84 |
+
st.title("Sentiment Analysis Results", anchor=False)
|
85 |
+
st.markdown('<div style="background-color: #df2e38; padding: 16px; border-radius: 5px; font-weight: bold; color:white;">This sentence contains a negative sentiment</div>', unsafe_allow_html=True)
|
86 |
+
else:
|
87 |
+
st.title("Sentiment Analysis Results", anchor=False)
|
88 |
+
st.markdown('<div style="background-color: #ffa500; padding: 16px; border-radius: 5px; font-weight: bold; color:white;">This sentence is neutral</div>', unsafe_allow_html=True)
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit == 1.23.0
|
2 |
+
torch
|
3 |
+
transformers == 4.30.2
|
4 |
+
numpy == 1.23.0
|
5 |
+
tweet-preprocessor == 0.6.0
|
style.css
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
span {
|
2 |
+
font-size: 28px !important;
|
3 |
+
margin-bottom: 5px;
|
4 |
+
}
|
5 |
+
|
6 |
+
.css-zt5igj span {
|
7 |
+
text-align: center;
|
8 |
+
color: black;
|
9 |
+
}
|
10 |
+
|
11 |
+
.stTextArea .css-1om1ktf .st-bs {
|
12 |
+
background-color: #fff;
|
13 |
+
border: 1px #00381d;
|
14 |
+
border-radius: 8px;
|
15 |
+
padding: 8px 12px;
|
16 |
+
}
|
17 |
+
|
18 |
+
.stButton button {
|
19 |
+
background-color: #33fb9a;
|
20 |
+
width: 150px;
|
21 |
+
height: 40px;
|
22 |
+
color: white;
|
23 |
+
font-size: 16px;
|
24 |
+
border: none;
|
25 |
+
border-radius: 8px;
|
26 |
+
cursor: pointer;
|
27 |
+
}
|
28 |
+
|
29 |
+
.stButton button p {
|
30 |
+
color: white;
|
31 |
+
font-weight: 600;
|
32 |
+
font-size: 18px !important;
|
33 |
+
}
|
34 |
+
|
35 |
+
.stButton button:hover {
|
36 |
+
background-color: #1bcc76;
|
37 |
+
color: white;
|
38 |
+
}
|
39 |
+
|
40 |
+
#text-input-still-empty span {
|
41 |
+
font-size: 30px !important;
|
42 |
+
}
|
43 |
+
|
44 |
+
#sentiment-analysis-results span {
|
45 |
+
font-size: 30px !important;
|
46 |
+
}
|
47 |
+
|
48 |
+
.stAlert .st-at {
|
49 |
+
background-color: #18d379;
|
50 |
+
border-radius: 5px;
|
51 |
+
color: white;
|
52 |
+
}
|
53 |
+
|
54 |
+
.css-5rimss, .css-1w6rlcb p {
|
55 |
+
font-weight: bold;
|
56 |
+
}
|
57 |
+
|