Spaces:
Sleeping
Sleeping
import gradio as gr | |
import io | |
import numpy as np | |
import torch | |
from decord import cpu, VideoReader, bridge | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers import BitsAndBytesConfig | |
import json | |
MODEL_PATH = "THUDM/cogvlm2-llama3-caption" | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16 | |
DELAY_REASONS = { | |
"step1": {"reasons": ["Delay in Bead Insertion","Lack of raw material"]}, | |
"step2": {"reasons": ["Inner Liner Adjustment by Technician","Person rebuilding defective Tire Sections"]}, | |
"step3": {"reasons": ["Manual Adjustment in Ply1 apply","Technician repairing defective Tire Sections"]}, | |
"step4": {"reasons": ["Delay in Bead set","Lack of raw material"]}, | |
"step5": {"reasons": ["Delay in Turnup","Lack of raw material"]}, | |
"step6": {"reasons": ["Person Repairing sidewall","Person rebuilding defective Tire Sections"]}, | |
"step7": {"reasons": ["Delay in sidewall stitching","Lack of raw material"]}, | |
"step8": {"reasons": ["No person available to load Carcass","No person available to collect tire"]} | |
} | |
with open('delay_reasons.json', 'w') as f: | |
json.dump(DELAY_REASONS, f, indent=4) | |
def load_video(video_data, strategy='chat'): | |
bridge.set_bridge('torch') | |
mp4_stream = video_data | |
num_frames = 24 | |
decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0)) | |
frame_id_list = [] | |
total_frames = len(decord_vr) | |
timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))] | |
max_second = round(max(timestamps)) + 1 | |
for second in range(max_second): | |
closest_num = min(timestamps, key=lambda x: abs(x - second)) | |
index = timestamps.index(closest_num) | |
frame_id_list.append(index) | |
if len(frame_id_list) >= num_frames: | |
break | |
video_data = decord_vr.get_batch(frame_id_list) | |
video_data = video_data.permute(3, 0, 1, 2) | |
return video_data | |
def load_model(): | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=TORCH_TYPE, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_PATH, | |
torch_dtype=TORCH_TYPE, | |
trust_remote_code=True, | |
quantization_config=quantization_config, | |
device_map="auto" | |
).eval() | |
return model, tokenizer | |
def predict(prompt, video_data, temperature, model, tokenizer): | |
strategy = 'chat' | |
video = load_video(video_data, strategy=strategy) | |
history = [] | |
inputs = model.build_conversation_input_ids( | |
tokenizer=tokenizer, | |
query=prompt, | |
images=[video], | |
history=history, | |
template_version=strategy | |
) | |
inputs = { | |
'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE), | |
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE), | |
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE), | |
'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]], | |
} | |
gen_kwargs = { | |
"max_new_tokens": 2048, | |
"pad_token_id": 128002, | |
"top_k": 1, | |
"do_sample": False, | |
"top_p": 0.1, | |
"temperature": temperature, | |
} | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, **gen_kwargs) | |
outputs = outputs[:, inputs['input_ids'].shape[1]:] | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
def get_base_prompt(): | |
return """You are an expert AI model trained to analyze and interpret manufacturing processes. | |
The task is to evaluate video footage of specific steps in a tire manufacturing process. | |
The process has 8 total steps, but only delayed steps are provided for analysis. | |
**Your Goal:** | |
1. Analyze the provided video. | |
2. Identify possible reasons for the delay in the manufacturing step shown in the video. | |
3. Provide a clear explanation of the delay based on observed factors. | |
**Context:** | |
Tire manufacturing involves 8 steps, and delays may occur due to machinery faults, | |
raw material availability, labor efficiency, or unexpected disruptions. | |
**Output:** | |
Explain why the delay occurred in this step. Include specific observations | |
and their connection to the delay.""" | |
def inference(video, step_number, selected_reason): | |
if not video: | |
return "Please upload a video first." | |
model, tokenizer = load_model() | |
video_data = video.read() | |
base_prompt = get_base_prompt() | |
full_prompt = f"{base_prompt}\n\nAnalyzing Step {step_number}\nPossible reason: {selected_reason}" | |
temperature = 0.8 | |
response = predict(full_prompt, video_data, temperature, model, tokenizer) | |
return response | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
video = gr.Video(label="Video Input", sources=["upload"]) | |
step_number = gr.Dropdown(choices=[f"Step {i}" for i in range(1, 9)], label="Manufacturing Step", value="Step 1") | |
reason = gr.Dropdown(choices=DELAY_REASONS["step1"]["reasons"], label="Possible Delay Reason", value=DELAY_REASONS["step1"]["reasons"][0]) | |
analyze_btn = gr.Button("Analyze Delay", variant="primary") | |
with gr.Column(): | |
output = gr.Textbox(label="Analysis Result") | |
def update_reasons(step): | |
step_num = step.lower().replace(" ", "") | |
return gr.Dropdown(choices=DELAY_REASONS[step_num]["reasons"]) | |
step_number.change(fn=update_reasons, inputs=[step_number], outputs=[reason]) | |
analyze_btn.click(fn=inference, inputs=[video, step_number, reason], outputs=[output]) | |
if __name__ == "__main__": | |
demo.queue().launch() |