Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,115 Bytes
82b20ab 3c574ec 82b20ab 3c574ec 82b20ab 3c574ec 82b20ab 3c574ec 82b20ab 3c574ec 82b20ab 662c4db 82b20ab 3c574ec 82b20ab 662c4db 3c574ec 82b20ab 3c574ec 82b20ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
#!/usr/bin/env python
"""A demo of the VitPose model.
This code is based on the implementation from the Colab notebook:
https://colab.research.google.com/drive/1e8fcby5rhKZWcr9LSN8mNbQ0TU4Dxxpo
"""
import pathlib
import tempfile
import cv2
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import supervision as sv
import torch
import tqdm
from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation
DESCRIPTION = "# ViTPose"
MAX_NUM_FRAMES = 300
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
person_detector_name = "PekingU/rtdetr_r50vd_coco_o365"
person_image_processor = AutoProcessor.from_pretrained(person_detector_name)
person_model = RTDetrForObjectDetection.from_pretrained(person_detector_name, device_map=device)
pose_model_name = "usyd-community/vitpose-base-simple"
pose_image_processor = AutoProcessor.from_pretrained(pose_model_name)
pose_model = VitPoseForPoseEstimation.from_pretrained(pose_model_name, device_map=device)
@spaces.GPU(duration=5)
@torch.inference_mode()
def process_image(image: PIL.Image.Image) -> tuple[PIL.Image.Image, list[dict]]:
inputs = person_image_processor(images=image, return_tensors="pt").to(device)
outputs = person_model(**inputs)
results = person_image_processor.post_process_object_detection(
outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3
)
result = results[0] # take first image results
# Human label refers 0 index in COCO dataset
person_boxes_xyxy = result["boxes"][result["labels"] == 0]
person_boxes_xyxy = person_boxes_xyxy.cpu().numpy()
# Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format
person_boxes = person_boxes_xyxy.copy()
person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]
inputs = pose_image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)
# for vitpose-plus-base checkpoint we should additionaly provide dataset_index
# to sepcify which MOE experts to use for inference
if pose_model.config.backbone_config.num_experts > 1:
dataset_index = torch.tensor([0] * len(inputs["pixel_values"]))
dataset_index = dataset_index.to(inputs["pixel_values"].device)
inputs["dataset_index"] = dataset_index
outputs = pose_model(**inputs)
pose_results = pose_image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes])
image_pose_result = pose_results[0] # results for first image
# make results more human-readable
human_readable_results = []
for i, person_pose in enumerate(image_pose_result):
data = {
"person_id": i,
"bbox": person_pose["bbox"].numpy().tolist(),
"keypoints": [],
}
for keypoint, label, score in zip(
person_pose["keypoints"], person_pose["labels"], person_pose["scores"], strict=True
):
keypoint_name = pose_model.config.id2label[label.item()]
x, y = keypoint
data["keypoints"].append({"name": keypoint_name, "x": x.item(), "y": y.item(), "score": score.item()})
human_readable_results.append(data)
# preprocess to torch tensor of shape (n_objects, n_keypoints, 2)
xy = [pose_result["keypoints"] for pose_result in image_pose_result]
xy = torch.stack(xy).cpu().numpy()
scores = [pose_result["scores"] for pose_result in image_pose_result]
scores = torch.stack(scores).cpu().numpy()
keypoints = sv.KeyPoints(xy=xy, confidence=scores)
detections = sv.Detections(xyxy=person_boxes_xyxy)
edge_annotator = sv.EdgeAnnotator(color=sv.Color.GREEN, thickness=1)
vertex_annotator = sv.VertexAnnotator(color=sv.Color.RED, radius=2)
bounding_box_annotator = sv.BoxAnnotator(color=sv.Color.WHITE, color_lookup=sv.ColorLookup.INDEX, thickness=1)
annotated_frame = image.copy()
# annotate boundg boxes
annotated_frame = bounding_box_annotator.annotate(scene=image.copy(), detections=detections)
# annotate edges and verticies
annotated_frame = edge_annotator.annotate(scene=annotated_frame, key_points=keypoints)
return vertex_annotator.annotate(scene=annotated_frame, key_points=keypoints), human_readable_results
@spaces.GPU(duration=60)
def process_video(
video_path: str,
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008
) -> str:
cap = cv2.VideoCapture(video_path)
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
fps = cap.get(cv2.CAP_PROP_FPS)
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as out_file:
writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height))
for _ in tqdm.auto.tqdm(range(min(MAX_NUM_FRAMES, num_frames))):
ok, frame = cap.read()
if not ok:
break
rgb_frame = frame[:, :, ::-1]
annotated_frame, _ = process_image(PIL.Image.fromarray(rgb_frame))
writer.write(np.asarray(annotated_frame)[:, :, ::-1])
writer.release()
cap.release()
return out_file.name
with gr.Blocks(css_paths="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.Tab("Image"):
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
run_button_image = gr.Button()
with gr.Column():
output_image = gr.Image(label="Output Image")
output_json = gr.JSON(label="Output JSON")
gr.Examples(
examples=sorted(pathlib.Path("images").glob("*.jpg")),
inputs=input_image,
outputs=[output_image, output_json],
fn=process_image,
)
run_button_image.click(
fn=process_image,
inputs=input_image,
outputs=[output_image, output_json],
)
with gr.Tab("Video"):
gr.Markdown(f"The input video will be truncated to {MAX_NUM_FRAMES} frames.")
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video")
run_button_video = gr.Button()
with gr.Column():
output_video = gr.Video(label="Output Video")
gr.Examples(
examples=sorted(pathlib.Path("videos").glob("*.mp4")),
inputs=input_video,
outputs=output_video,
fn=process_video,
cache_examples=False,
)
run_button_video.click(
fn=process_video,
inputs=input_video,
outputs=output_video,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|