text-to-video / app.py
hivecorp's picture
Update app.py
f1779f5 verified
raw
history blame
5.4 kB
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
from moviepy.editor import AudioFileClip
# Get all available voices
async def get_voices():
voices = await edge_tts.list_voices()
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
# Text to speech functionality
async def text_to_speech(text, voice, rate, pitch):
if not text.strip():
return None, gr.Warning("Please enter the text to convert.")
if not voice:
return None, gr.Warning("Please select a voice.")
voice_short_name = voice.split(" - ")[0]
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path, None
# Generate SRT file based on user preferences
def generate_srt(words, audio_duration, srt_path, words_per_line, lines_per_paragraph):
total_words = len(words)
# Calculate how long each segment will be displayed
segment_duration = audio_duration / (total_words // words_per_line // lines_per_paragraph) # Calculate duration based on total segments
current_time = 0
with open(srt_path, 'w', encoding='utf-8') as srt_file:
for i in range(0, total_words, words_per_line):
# Gather lines based on the defined words per line
lines = words[i:i + words_per_line]
line_text = ' '.join(lines)
start_time = current_time
end_time = min(start_time + segment_duration, audio_duration) # Ensure it doesn't exceed audio duration
start_time_str = format_srt_time(start_time)
end_time_str = format_srt_time(end_time)
srt_file.write(f"{(i // words_per_line) + 1}\n{start_time_str} --> {end_time_str}\n")
srt_file.write(f"{line_text}\n\n")
current_time += segment_duration # Update current time for the next segment
return srt_path
def format_srt_time(seconds):
millis = int((seconds - int(seconds)) * 1000)
seconds = int(seconds)
minutes = seconds // 60
hours = seconds // 3600
minutes %= 60
seconds %= 60
return f"{hours:02}:{minutes:02}:{seconds:02},{millis:03}"
# Text to audio and SRT functionality
async def text_to_audio_and_srt(text, voice, rate, pitch, words_per_line, lines_per_paragraph):
# Clean up input text: remove extra spaces and newlines
cleaned_text = ' '.join(text.split())
audio_path, warning = await text_to_speech(cleaned_text, voice, rate, pitch)
if warning:
return None, None, warning
audio_clip = AudioFileClip(audio_path)
audio_duration = audio_clip.duration
# Generate SRT file based on the entire text
base_name = os.path.splitext(audio_path)[0]
srt_path = f"{base_name}_subtitle.srt"
# Split input text into words
words = cleaned_text.split()
generate_srt(words, audio_duration, srt_path, words_per_line, lines_per_paragraph)
return audio_path, srt_path, None
# Gradio interface function
def tts_interface(text, voice, rate, pitch, words_per_line, lines_per_paragraph):
audio_path, srt_path, warning = asyncio.run(text_to_audio_and_srt(text, voice, rate, pitch, words_per_line, lines_per_paragraph))
return audio_path, srt_path, warning
# Create Gradio app
async def create_demo():
voices = await get_voices()
with gr.Blocks() as demo:
gr.Markdown(
"""
<h1 style="text-align: center; color: #333;">Text to Speech with Subtitles</h1>
<p style="text-align: center; color: #555;">Convert your text to natural-sounding speech and generate subtitles (SRT) for your audio.</p>
""",
elem_id="header"
)
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label="Input Text", lines=5, placeholder="Enter text here...")
voice_dropdown = gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value="")
rate_slider = gr.Slider(minimum=-50, maximum=50, value=0, label="Rate Adjustment (%)", step=1)
pitch_slider = gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1)
words_per_line = gr.Slider(minimum=3, maximum=8, value=5, label="Words per Line", step=1)
lines_per_paragraph = gr.Slider(minimum=1, maximum=5, value=2, label="Lines per Paragraph", step=1)
generate_button = gr.Button("Generate Audio and Subtitles", variant="primary")
with gr.Column():
output_audio = gr.Audio(label="Generated Audio", type="filepath")
output_srt = gr.File(label="Generated SRT", file_count="single")
warning_msg = gr.Markdown(label="Warning", visible=False)
generate_button.click(
fn=tts_interface,
inputs=[text_input, voice_dropdown, rate_slider, pitch_slider, words_per_line, lines_per_paragraph],
outputs=[output_audio, output_srt, warning_msg]
)
return demo
# Run the app
if __name__ == "__main__":
demo = asyncio.run(create_demo())
demo.launch()