Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,11 +19,11 @@ def format_time(seconds):
|
|
19 |
return f"{hrs:02}:{mins:02}:{secs:02},{millis:03}"
|
20 |
|
21 |
# Function to generate SRT with accurate timing per batch
|
22 |
-
async def generate_accurate_srt(batch_text, batch_num):
|
23 |
audio_file = f"batch_{batch_num}_audio.wav"
|
24 |
|
25 |
# Generate the audio using edge-tts
|
26 |
-
tts = edge_tts.Communicate(batch_text, "en-US-
|
27 |
await tts.save(audio_file)
|
28 |
|
29 |
# Get the actual length of the audio file
|
@@ -32,33 +32,35 @@ async def generate_accurate_srt(batch_text, batch_num):
|
|
32 |
# Initialize SRT content
|
33 |
srt_content = ""
|
34 |
words = batch_text.split()
|
35 |
-
|
36 |
-
|
37 |
|
38 |
# Build SRT content with accurate timing
|
39 |
for i in range(0, len(words), 10):
|
40 |
segment_words = words[i:i+10]
|
41 |
end_time = start_time + segment_duration
|
42 |
-
srt_content += f"{i // 10 + 1}\n"
|
43 |
srt_content += f"{format_time(start_time)} --> {format_time(end_time)}\n"
|
44 |
srt_content += " ".join(segment_words) + "\n\n"
|
45 |
start_time = end_time
|
46 |
|
47 |
-
return srt_content, audio_file
|
48 |
|
49 |
# Batch processing function for SRT and audio generation
|
50 |
async def batch_process_srt_and_audio(script_text):
|
51 |
batches = [script_text[i:i+500] for i in range(0, len(script_text), 500)]
|
52 |
all_srt_content = ""
|
53 |
combined_audio = AudioSegment.empty()
|
|
|
54 |
|
55 |
for batch_num, batch_text in enumerate(batches):
|
56 |
-
srt_content, audio_file = await generate_accurate_srt(batch_text, batch_num)
|
57 |
all_srt_content += srt_content
|
58 |
|
59 |
# Append the audio of each batch to the combined audio
|
60 |
batch_audio = AudioSegment.from_file(audio_file)
|
61 |
combined_audio += batch_audio
|
|
|
62 |
|
63 |
# Clean up the individual batch audio file
|
64 |
os.remove(audio_file)
|
@@ -73,7 +75,7 @@ async def batch_process_srt_and_audio(script_text):
|
|
73 |
# Gradio interface function
|
74 |
async def process_script(script_text):
|
75 |
srt_path, audio_path = await batch_process_srt_and_audio(script_text)
|
76 |
-
return srt_path, audio_path
|
77 |
|
78 |
# Gradio interface setup
|
79 |
app = gr.Interface(
|
@@ -81,9 +83,10 @@ app = gr.Interface(
|
|
81 |
inputs=gr.Textbox(label="Enter Script Text", lines=10),
|
82 |
outputs=[
|
83 |
gr.File(label="Download SRT File"),
|
84 |
-
gr.File(label="Download Audio File")
|
|
|
85 |
],
|
86 |
-
description="Upload your script text, and the app will generate audio and an accurate SRT file for download."
|
87 |
)
|
88 |
|
89 |
app.launch()
|
|
|
19 |
return f"{hrs:02}:{mins:02}:{secs:02},{millis:03}"
|
20 |
|
21 |
# Function to generate SRT with accurate timing per batch
|
22 |
+
async def generate_accurate_srt(batch_text, batch_num, start_offset):
|
23 |
audio_file = f"batch_{batch_num}_audio.wav"
|
24 |
|
25 |
# Generate the audio using edge-tts
|
26 |
+
tts = edge_tts.Communicate(batch_text, "en-US-AndrewNeural", rate="-25%")
|
27 |
await tts.save(audio_file)
|
28 |
|
29 |
# Get the actual length of the audio file
|
|
|
32 |
# Initialize SRT content
|
33 |
srt_content = ""
|
34 |
words = batch_text.split()
|
35 |
+
segment_duration = actual_length / len(words) * 10 # Adjusted for ~10 words per SRT segment
|
36 |
+
start_time = start_offset
|
37 |
|
38 |
# Build SRT content with accurate timing
|
39 |
for i in range(0, len(words), 10):
|
40 |
segment_words = words[i:i+10]
|
41 |
end_time = start_time + segment_duration
|
42 |
+
srt_content += f"{i // 10 + 1 + (batch_num * 100)}\n"
|
43 |
srt_content += f"{format_time(start_time)} --> {format_time(end_time)}\n"
|
44 |
srt_content += " ".join(segment_words) + "\n\n"
|
45 |
start_time = end_time
|
46 |
|
47 |
+
return srt_content, audio_file, start_time
|
48 |
|
49 |
# Batch processing function for SRT and audio generation
|
50 |
async def batch_process_srt_and_audio(script_text):
|
51 |
batches = [script_text[i:i+500] for i in range(0, len(script_text), 500)]
|
52 |
all_srt_content = ""
|
53 |
combined_audio = AudioSegment.empty()
|
54 |
+
start_offset = 0.0 # Track cumulative time offset for SRT timing
|
55 |
|
56 |
for batch_num, batch_text in enumerate(batches):
|
57 |
+
srt_content, audio_file, end_offset = await generate_accurate_srt(batch_text, batch_num, start_offset)
|
58 |
all_srt_content += srt_content
|
59 |
|
60 |
# Append the audio of each batch to the combined audio
|
61 |
batch_audio = AudioSegment.from_file(audio_file)
|
62 |
combined_audio += batch_audio
|
63 |
+
start_offset = end_offset # Update the start offset for the next batch
|
64 |
|
65 |
# Clean up the individual batch audio file
|
66 |
os.remove(audio_file)
|
|
|
75 |
# Gradio interface function
|
76 |
async def process_script(script_text):
|
77 |
srt_path, audio_path = await batch_process_srt_and_audio(script_text)
|
78 |
+
return srt_path, audio_path, audio_path
|
79 |
|
80 |
# Gradio interface setup
|
81 |
app = gr.Interface(
|
|
|
83 |
inputs=gr.Textbox(label="Enter Script Text", lines=10),
|
84 |
outputs=[
|
85 |
gr.File(label="Download SRT File"),
|
86 |
+
gr.File(label="Download Audio File"),
|
87 |
+
gr.Audio(label="Play Audio")
|
88 |
],
|
89 |
+
description="Upload your script text, and the app will generate audio with en-US-AndrewNeural voice (Rate: -25%) and an accurate SRT file for download."
|
90 |
)
|
91 |
|
92 |
app.launch()
|