photo-filter / app.py
hamz011's picture
Update app.py
982d35f verified
import cv2
import numpy as np
import gradio as gr
# Farklı filtre fonksiyonları
def apply_gaussian_blur(frame):
return cv2.GaussianBlur(frame, (15, 15), 0)
def apply_sharpening_filter(frame):
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
return cv2.filter2D(frame, -1, kernel)
def apply_edge_detection(frame):
return cv2.Canny(frame, 100, 200)
def apply_invert_filter(frame):
return cv2.bitwise_not(frame)
def adjust_brightness_contrast(frame, alpha=1.0, beta=50):
return cv2.convertScaleAbs(frame, alpha=alpha, beta=beta)
def apply_grayscale_filter(frame):
return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
def apply_sepia_filter(frame):
sepia_filter = np.array([[0.272, 0.534, 0.131],
[0.349, 0.686, 0.168],
[0.393, 0.769, 0.189]])
return cv2.transform(frame, sepia_filter)
def apply_fall_filter(frame):
fall_filter = np.array([[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]])
return cv2.transform(frame, fall_filter)
def apply_emboss_filter(frame):
kernel = np.array([[2, 0, 0], [0, -1, 0], [0, 0, -2]])
return cv2.filter2D(frame, -1, kernel)
def apply_cartoon_filter(frame):
# Renkleri yumuşatmak için bilateral filtre
color = cv2.bilateralFilter(frame, d=9, sigmaColor=75, sigmaSpace=75)
# Kenar tespiti için gri tonlamalı görüntü ve adaptive threshold kullanımı
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
edges = cv2.adaptiveThreshold(
gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9
)
# Kenarları renklere uygula
cartoon = cv2.bitwise_and(color, color, mask=edges)
return cartoon
def apply_motion_blur(frame):
kernel_size = 15
kernel = np.zeros((kernel_size, kernel_size))
kernel[int((kernel_size - 1)/2), :] = np.ones(kernel_size)
kernel = kernel / kernel_size
return cv2.filter2D(frame, -1, kernel)
def apply_vignette_filter(frame):
# Vignette maskesi oluştur
rows, cols = frame.shape[:2]
kernel_x = cv2.getGaussianKernel(cols, cols / 2)
kernel_y = cv2.getGaussianKernel(rows, rows / 2)
kernel = kernel_y * kernel_x.T
mask = 255 * kernel / np.max(kernel)
vignette = np.zeros_like(frame, dtype=np.float32) # Daha hassas türde işlem yapma
for i in range(3): # Her renk kanalı için vignette uygulama
vignette[:, :, i] = frame[:, :, i] * mask
# Değerleri uint8 formatına dönüştürme
vignette = np.clip(vignette, 0, 255).astype(np.uint8)
return vignette
def apply_pencil_sketch(frame):
gray, sketch = cv2.pencilSketch(frame, sigma_s=60, sigma_r=0.07, shade_factor=0.05)
return sketch
def apply_hdr_filter(frame):
return cv2.detailEnhance(frame, sigma_s=12, sigma_r=0.15)
def apply_summer_filter(frame):
summer_filter = np.array([[0.272, 0.543, 0.131],
[0.349, 0.686, 0.168],
[0.393, 0.769, 0.189]])
return cv2.transform(frame, summer_filter)
def apply_warm_filter(frame):
increase_red = cv2.addWeighted(frame, 1, np.array([0, 20, 0]), 0.5, 0)
return increase_red
def apply_cold_filter(frame):
decrease_red = cv2.addWeighted(frame, 1, np.array([0, -20, 0]), 0.5, 0)
return decrease_red
def apply_solarize_filter(frame):
return cv2.bitwise_not(frame)
def apply_color_boost(frame):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
hsv[...,1] = cv2.add(hsv[...,1], 50)
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
def apply_dilation_filter(frame):
kernel = np.ones((5, 5), np.uint8)
return cv2.dilate(frame, kernel, iterations=1)
# Filtre uygulama fonksiyonu
def apply_filter(filter_type, input_image=None):
if input_image is not None:
frame = input_image
else:
cap = cv2.VideoCapture(0)
ret, frame = cap.read()
cap.release()
if not ret:
return "Web kameradan görüntü alınamadı"
if filter_type == "Gaussian Blur":
return apply_gaussian_blur(frame)
elif filter_type == "Sharpen":
return apply_sharpening_filter(frame)
elif filter_type == "Edge Detection":
return apply_edge_detection(frame)
elif filter_type == "Invert":
return apply_invert_filter(frame)
elif filter_type == "Brightness":
return adjust_brightness_contrast(frame, alpha=1.0, beta=50)
elif filter_type == "Grayscale":
return apply_grayscale_filter(frame)
elif filter_type == "Sepia":
return apply_sepia_filter(frame)
elif filter_type == "Sonbahar":
return apply_fall_filter(frame)
elif filter_type == "Emboss":
return apply_emboss_filter(frame)
elif filter_type == "Cartoon":
return apply_cartoon_filter(frame)
elif filter_type == "Motion Blur":
return apply_motion_blur(frame)
elif filter_type == "Vignette":
return apply_vignette_filter(frame)
elif filter_type == "Pencil Sketch":
return apply_pencil_sketch(frame)
elif filter_type == "HDR":
return apply_hdr_filter(frame)
elif filter_type == "Summer":
return apply_summer_filter(frame)
elif filter_type == "Warm":
return apply_warm_filter(frame)
elif filter_type == "Cold":
return apply_cold_filter(frame)
elif filter_type == "Solarize":
return apply_solarize_filter(frame)
elif filter_type == "Color Boost":
return apply_color_boost(frame)
elif filter_type == "Dilation":
return apply_dilation_filter(frame)
# Gradio arayüzü
with gr.Blocks(css="""
.gr-button {
width: 80px; /* Buton genişliği */
height: 30px; /* Buton yüksekliği */
font-size: 12px; /* Yazı boyutu */
}
.gr-image {
width: 400px; /* Sabit genişlik */
height: 300px; /* Sabit yükseklik */
}
#image-upload {
width: 400px; /* Sabit genişlik */
height: 300px; /* Sabit yükseklik */
}
#output-image {
width: 400px; /* Sabit genişlik */
height: 300px; /* Sabit yükseklik */
}
""") as demo:
gr.Markdown("# Resim Filtreleme")
# Filtre seçenekleri
filter_type = gr.Dropdown(
label="Filtre Seçin",
choices=["Gaussian Blur", "Sharpen", "Edge Detection", "Invert", "Brightness", "Grayscale", "Sepia", "Sonbahar",
"Emboss", "Cartoon", "Motion Blur", "Vignette", "Pencil Sketch", "HDR", "Summer", "Warm", "Cold",
"Solarize", "Color Boost", "Dilation"],
value="Gaussian Blur"
)
with gr.Row():
# Görüntü yükleme alanı
input_image = gr.Image(label="Resim Yükle", type="numpy")
# Çıktı için görüntü
output_image = gr.Image(label="Filtre Uygulandı")
# Filtre uygula butonu
apply_button = gr.Button("Filtreyi Uygula")
# Butona tıklanınca filtre uygulama fonksiyonu
apply_button.click(fn=apply_filter, inputs=[filter_type, input_image], outputs=output_image)
# Gradio arayüzünü başlat
demo.launch()