Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
# API istemcisini başlatıyoruz | |
client = OpenAI( | |
base_url="https://integrate.api.nvidia.com/v1", | |
api_key="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" # Geçerli API anahtarını kullan | |
) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
# Geçmiş mesajları ekliyoruz | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
# Kullanıcı mesajını ekliyoruz | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
# API'den gelen yanıtı işliyoruz | |
completion = client.chat.completions.create( | |
model="nvidia/nemotron-4-340b-instruct", | |
messages=messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
stream=True, | |
) | |
for chunk in completion: | |
if chunk.choices[0].delta.content is not None: | |
token = chunk.choices[0].delta.content | |
response += token | |
yield response | |
# Gradio arayüzünü tanımlıyoruz | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |