Spaces:
Running
on
L40S
Running
on
L40S
Update app.py
Browse files
app.py
CHANGED
@@ -1,645 +1,2 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
import os
|
4 |
-
import shutil
|
5 |
-
import tempfile
|
6 |
-
import torch
|
7 |
-
import logging
|
8 |
-
import numpy as np
|
9 |
-
import re
|
10 |
-
from concurrent.futures import ThreadPoolExecutor
|
11 |
-
from functools import lru_cache
|
12 |
-
|
13 |
-
# ๋ก๊น
์ค์
|
14 |
-
logging.basicConfig(
|
15 |
-
level=logging.INFO,
|
16 |
-
format='%(asctime)s - %(levelname)s - %(message)s',
|
17 |
-
handlers=[
|
18 |
-
logging.FileHandler('yue_generation.log'),
|
19 |
-
logging.StreamHandler()
|
20 |
-
]
|
21 |
-
)
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
################################
|
26 |
-
# ๊ธฐ์กด์ ์ ์๋ ํจ์ ๋ฐ ๋ก์ง๋ค #
|
27 |
-
################################
|
28 |
-
|
29 |
-
def optimize_gpu_settings():
|
30 |
-
if torch.cuda.is_available():
|
31 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
32 |
-
torch.backends.cudnn.benchmark = True
|
33 |
-
torch.backends.cudnn.enabled = True
|
34 |
-
torch.backends.cudnn.deterministic = False
|
35 |
-
torch.cuda.empty_cache()
|
36 |
-
torch.cuda.set_device(0)
|
37 |
-
torch.cuda.Stream(0)
|
38 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
39 |
-
|
40 |
-
logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
41 |
-
logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
|
42 |
-
|
43 |
-
if 'L40S' in torch.cuda.get_device_name(0):
|
44 |
-
torch.cuda.set_per_process_memory_fraction(0.95)
|
45 |
-
|
46 |
-
import logging
|
47 |
-
|
48 |
-
def analyze_lyrics(lyrics, repeat_chorus=2):
|
49 |
-
# ๋จผ์ ๋ผ์ธ๋ณ๋ก ๋ถ๋ฆฌํ๊ณ , ๊ณต๋ฐฑ ์ค ์ ๊ฑฐ
|
50 |
-
lines = [line.strip() for line in lyrics.split('\n')]
|
51 |
-
lines = [line for line in lines if line]
|
52 |
-
|
53 |
-
# ๋ง์ฝ ์ ์ฒด๊ฐ ๋น์ด์๋ค๋ฉด ๊ฐ์ ๋ก '.' ํ ์ค ์ถ๊ฐ
|
54 |
-
if not lines:
|
55 |
-
lines = ['.']
|
56 |
-
else:
|
57 |
-
# ๋ง์ง๋ง ์ค์ด [verse], [chorus], [bridge] ํ๊ทธ๋ก๋ง ๋๋๋ฉด
|
58 |
-
# ์์๋ก '.' ํ ์ค์ ์ถ๊ฐํ์ฌ ์ค์ ๊ฐ์ฌ ๋ผ์ธ์ด ๋๋๋ก ์ฒ๋ฆฌ
|
59 |
-
last_line_lower = lines[-1].lower()
|
60 |
-
if last_line_lower in ['[verse]', '[chorus]', '[bridge]']:
|
61 |
-
lines.append('.')
|
62 |
-
|
63 |
-
# ๊ธฐ๋ณธ ์น์
์ ๋ณด
|
64 |
-
sections = {
|
65 |
-
'verse': 0,
|
66 |
-
'chorus': 0,
|
67 |
-
'bridge': 0,
|
68 |
-
'total_lines': len(lines)
|
69 |
-
}
|
70 |
-
|
71 |
-
# ์น์
๋ผ์ธ๋ค์ ๋ด์ ๋์
๋๋ฆฌ
|
72 |
-
section_lines = {
|
73 |
-
'verse': [],
|
74 |
-
'chorus': [],
|
75 |
-
'bridge': []
|
76 |
-
}
|
77 |
-
|
78 |
-
current_section = None
|
79 |
-
last_section_start = 0
|
80 |
-
|
81 |
-
# [verse], [chorus], [bridge] ํ๊ทธ๊ฐ ๋์ค๋ฉด ์น์
์ ๊ตฌ๋ถํ์ฌ ๋ผ์ธ์ ์ ์ฅ
|
82 |
-
for i, line in enumerate(lines):
|
83 |
-
lower_line = line.lower()
|
84 |
-
|
85 |
-
if '[verse]' in lower_line:
|
86 |
-
if current_section is not None:
|
87 |
-
section_lines[current_section].extend(lines[last_section_start:i])
|
88 |
-
current_section = 'verse'
|
89 |
-
sections['verse'] += 1
|
90 |
-
last_section_start = i + 1
|
91 |
-
|
92 |
-
elif '[chorus]' in lower_line:
|
93 |
-
if current_section is not None:
|
94 |
-
section_lines[current_section].extend(lines[last_section_start:i])
|
95 |
-
current_section = 'chorus'
|
96 |
-
sections['chorus'] += 1
|
97 |
-
last_section_start = i + 1
|
98 |
-
|
99 |
-
elif '[bridge]' in lower_line:
|
100 |
-
if current_section is not None:
|
101 |
-
section_lines[current_section].extend(lines[last_section_start:i])
|
102 |
-
current_section = 'bridge'
|
103 |
-
sections['bridge'] += 1
|
104 |
-
last_section_start = i + 1
|
105 |
-
|
106 |
-
# ๋ง์ง๋ง ์น์
์ ๋จ์ ์๋ ๋ผ์ธ๋ค์ ์ถ๊ฐ
|
107 |
-
if current_section is not None and last_section_start < len(lines):
|
108 |
-
section_lines[current_section].extend(lines[last_section_start:])
|
109 |
-
|
110 |
-
# ์ฝ๋ฌ์ค ๋ฐ๋ณต ์ฒ๋ฆฌ
|
111 |
-
if sections['chorus'] > 0 and repeat_chorus > 1:
|
112 |
-
original_chorus = list(section_lines['chorus'])
|
113 |
-
for _ in range(repeat_chorus - 1):
|
114 |
-
section_lines['chorus'].extend(original_chorus)
|
115 |
-
|
116 |
-
# ์น์
๋ณ ๋ผ์ธ์ ๋ก๊น
|
117 |
-
logging.info(
|
118 |
-
f"Section line counts - Verse: {len(section_lines['verse'])}, "
|
119 |
-
f"Chorus: {len(section_lines['chorus'])}, "
|
120 |
-
f"Bridge: {len(section_lines['bridge'])}"
|
121 |
-
)
|
122 |
-
|
123 |
-
# ๋ฐํ: ์น์
์ ๋ณด, ์ ์ฒด ์น์
์, ์ ์ฒด ๋ผ์ธ ์, ๊ฐ ์น์
๋ณ ๋ผ์ธ ๋์
๋๋ฆฌ
|
124 |
-
return sections, (sections['verse'] + sections['chorus'] + sections['bridge']), len(lines), section_lines
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
def calculate_generation_params(lyrics):
|
129 |
-
sections, total_sections, total_lines, section_lines = analyze_lyrics(lyrics)
|
130 |
-
|
131 |
-
time_per_line = {
|
132 |
-
'verse': 4,
|
133 |
-
'chorus': 6,
|
134 |
-
'bridge': 5
|
135 |
-
}
|
136 |
-
|
137 |
-
section_durations = {}
|
138 |
-
for section_type in ['verse', 'chorus', 'bridge']:
|
139 |
-
lines_count = len(section_lines[section_type])
|
140 |
-
section_durations[section_type] = lines_count * time_per_line[section_type]
|
141 |
-
|
142 |
-
total_duration = sum(duration for duration in section_durations.values())
|
143 |
-
total_duration = max(60, int(total_duration * 1.2))
|
144 |
-
|
145 |
-
base_tokens = 3000
|
146 |
-
tokens_per_line = 200
|
147 |
-
extra_tokens = 1000
|
148 |
-
total_tokens = base_tokens + (total_lines * tokens_per_line) + extra_tokens
|
149 |
-
|
150 |
-
if sections['chorus'] > 0:
|
151 |
-
num_segments = 4
|
152 |
-
else:
|
153 |
-
num_segments = 3
|
154 |
-
|
155 |
-
max_tokens = min(12000, total_tokens)
|
156 |
-
|
157 |
-
return {
|
158 |
-
'max_tokens': max_tokens,
|
159 |
-
'num_segments': num_segments,
|
160 |
-
'sections': sections,
|
161 |
-
'section_lines': section_lines,
|
162 |
-
'estimated_duration': total_duration,
|
163 |
-
'section_durations': section_durations,
|
164 |
-
'has_chorus': sections['chorus'] > 0
|
165 |
-
}
|
166 |
-
|
167 |
-
def create_temp_file(content, prefix, suffix=".txt"):
|
168 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix)
|
169 |
-
content = content.strip() + "\n\n"
|
170 |
-
content = content.replace("\r\n", "\n").replace("\r", "\n")
|
171 |
-
temp_file.write(content)
|
172 |
-
temp_file.close()
|
173 |
-
logging.debug(f"Temporary file created: {temp_file.name}")
|
174 |
-
return temp_file.name
|
175 |
-
|
176 |
-
def empty_output_folder(output_dir):
|
177 |
-
try:
|
178 |
-
shutil.rmtree(output_dir)
|
179 |
-
os.makedirs(output_dir)
|
180 |
-
logging.info(f"Output folder cleaned: {output_dir}")
|
181 |
-
except Exception as e:
|
182 |
-
logging.error(f"Error cleaning output folder: {e}")
|
183 |
-
raise
|
184 |
-
|
185 |
-
def get_last_mp3_file(output_dir):
|
186 |
-
mp3_files = [f for f in os.listdir(output_dir) if f.endswith('.mp3')]
|
187 |
-
if not mp3_files:
|
188 |
-
logging.warning("No MP3 files found")
|
189 |
-
return None
|
190 |
-
|
191 |
-
mp3_files_with_path = [os.path.join(output_dir, f) for f in mp3_files]
|
192 |
-
mp3_files_with_path.sort(key=os.path.getmtime, reverse=True)
|
193 |
-
return mp3_files_with_path[0]
|
194 |
-
|
195 |
-
def get_audio_duration(file_path):
|
196 |
-
try:
|
197 |
-
import librosa
|
198 |
-
duration = librosa.get_duration(path=file_path)
|
199 |
-
return duration
|
200 |
-
except Exception as e:
|
201 |
-
logging.error(f"Failed to get audio duration: {e}")
|
202 |
-
return None
|
203 |
-
|
204 |
-
|
205 |
-
def detect_and_select_model(text):
|
206 |
-
if re.search(r'[\u3131-\u318E\uAC00-\uD7A3]', text):
|
207 |
-
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
|
208 |
-
elif re.search(r'[\u4e00-\u9fff]', text):
|
209 |
-
return "m-a-p/YuE-s1-7B-anneal-zh-cot"
|
210 |
-
elif re.search(r'[\u3040-\u309F\u30A0-\u30FF]', text):
|
211 |
-
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
|
212 |
-
else:
|
213 |
-
return "m-a-p/YuE-s1-7B-anneal-en-cot"
|
214 |
-
|
215 |
-
def install_flash_attn():
|
216 |
-
try:
|
217 |
-
if not torch.cuda.is_available():
|
218 |
-
logging.warning("GPU not available, skipping flash-attn installation")
|
219 |
-
return False
|
220 |
-
|
221 |
-
cuda_version = torch.version.cuda
|
222 |
-
if cuda_version is None:
|
223 |
-
logging.warning("CUDA not available, skipping flash-attn installation")
|
224 |
-
return False
|
225 |
-
|
226 |
-
logging.info(f"Detected CUDA version: {cuda_version}")
|
227 |
-
|
228 |
-
try:
|
229 |
-
import flash_attn
|
230 |
-
logging.info("flash-attn already installed")
|
231 |
-
return True
|
232 |
-
except ImportError:
|
233 |
-
logging.info("Installing flash-attn...")
|
234 |
-
|
235 |
-
subprocess.run(
|
236 |
-
["pip", "install", "flash-attn", "--no-build-isolation"],
|
237 |
-
check=True,
|
238 |
-
capture_output=True
|
239 |
-
)
|
240 |
-
logging.info("flash-attn installed successfully!")
|
241 |
-
return True
|
242 |
-
|
243 |
-
except Exception as e:
|
244 |
-
logging.warning(f"Failed to install flash-attn: {e}")
|
245 |
-
return False
|
246 |
-
|
247 |
-
def initialize_system():
|
248 |
-
optimize_gpu_settings()
|
249 |
-
|
250 |
-
with ThreadPoolExecutor(max_workers=4) as executor:
|
251 |
-
futures = []
|
252 |
-
futures.append(executor.submit(install_flash_attn))
|
253 |
-
|
254 |
-
from huggingface_hub import snapshot_download
|
255 |
-
|
256 |
-
folder_path = './inference/xcodec_mini_infer'
|
257 |
-
os.makedirs(folder_path, exist_ok=True)
|
258 |
-
logging.info(f"Created folder at: {folder_path}")
|
259 |
-
|
260 |
-
futures.append(executor.submit(
|
261 |
-
snapshot_download,
|
262 |
-
repo_id="m-a-p/xcodec_mini_infer",
|
263 |
-
local_dir="./inference/xcodec_mini_infer",
|
264 |
-
resume_download=True
|
265 |
-
))
|
266 |
-
|
267 |
-
for future in futures:
|
268 |
-
future.result()
|
269 |
-
|
270 |
-
try:
|
271 |
-
os.chdir("./inference")
|
272 |
-
logging.info(f"Working directory changed to: {os.getcwd()}")
|
273 |
-
except FileNotFoundError as e:
|
274 |
-
logging.error(f"Directory error: {e}")
|
275 |
-
raise
|
276 |
-
|
277 |
-
@lru_cache(maxsize=100)
|
278 |
-
def get_cached_file_path(content_hash, prefix):
|
279 |
-
return create_temp_file(content_hash, prefix)
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
def optimize_model_selection(lyrics, genre):
|
284 |
-
model_path = detect_and_select_model(lyrics)
|
285 |
-
params = calculate_generation_params(lyrics)
|
286 |
-
|
287 |
-
has_chorus = params['sections']['chorus'] > 0
|
288 |
-
|
289 |
-
model_config = {
|
290 |
-
"m-a-p/YuE-s1-7B-anneal-en-cot": {
|
291 |
-
"max_tokens": params['max_tokens'],
|
292 |
-
"temperature": 0.8,
|
293 |
-
"batch_size": 16,
|
294 |
-
"num_segments": params['num_segments'],
|
295 |
-
"estimated_duration": params['estimated_duration']
|
296 |
-
},
|
297 |
-
"m-a-p/YuE-s1-7B-anneal-jp-kr-cot": {
|
298 |
-
"max_tokens": params['max_tokens'],
|
299 |
-
"temperature": 0.7,
|
300 |
-
"batch_size": 16,
|
301 |
-
"num_segments": params['num_segments'],
|
302 |
-
"estimated_duration": params['estimated_duration']
|
303 |
-
},
|
304 |
-
"m-a-p/YuE-s1-7B-anneal-zh-cot": {
|
305 |
-
"max_tokens": params['max_tokens'],
|
306 |
-
"temperature": 0.7,
|
307 |
-
"batch_size": 16,
|
308 |
-
"num_segments": params['num_segments'],
|
309 |
-
"estimated_duration": params['estimated_duration']
|
310 |
-
}
|
311 |
-
}
|
312 |
-
|
313 |
-
if has_chorus:
|
314 |
-
for config in model_config.values():
|
315 |
-
config['max_tokens'] = int(config['max_tokens'] * 1.5)
|
316 |
-
|
317 |
-
return model_path, model_config[model_path], params
|
318 |
-
|
319 |
-
def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
320 |
-
genre_txt_path = None
|
321 |
-
lyrics_txt_path = None
|
322 |
-
|
323 |
-
try:
|
324 |
-
# ---- (1) ํ๋ฉด์๋ ๋ณด์ด์ง ์์ง๋ง, ๋ง์ง๋ง์ [chorus] bye ์ฝ์
----
|
325 |
-
forced_line = "[chorus] bye"
|
326 |
-
tmp_lyrics = lyrics_txt_content.strip()
|
327 |
-
# ์ด๋ฏธ 'bye'๊ฐ ๋ค์ด์๋์ง ํ์ธ (์ํ๋ค๋ฉด ์กฐ๊ฑด ์ถ๊ฐ/์ญ์ ๊ฐ๋ฅ)
|
328 |
-
if forced_line.lower() not in tmp_lyrics.lower():
|
329 |
-
tmp_lyrics += "\n" + forced_line
|
330 |
-
|
331 |
-
# ---- (2) ๊ฐ์ ์ฝ์
๋ tmp_lyrics๋ฅผ ํตํด ๋ชจ๋ธ ์ต์ ํ/์ค์ ----
|
332 |
-
model_path, config, params = optimize_model_selection(tmp_lyrics, genre_txt_content)
|
333 |
-
logging.info(f"Selected model: {model_path}")
|
334 |
-
logging.info(f"Lyrics analysis: {params}")
|
335 |
-
|
336 |
-
has_chorus = params['sections']['chorus'] > 0
|
337 |
-
estimated_duration = params.get('estimated_duration', 90)
|
338 |
-
|
339 |
-
# ์ธ๊ทธ๋จผํธ ๋ฐ ํ ํฐ ์ ์ค์
|
340 |
-
if has_chorus:
|
341 |
-
actual_max_tokens = min(12000, int(config['max_tokens'] * 1.3)) # 30% ๋ ๋ง์ ํ ํฐ
|
342 |
-
actual_num_segments = min(5, params['num_segments'] + 2) # ์ถ๊ฐ ์ธ๊ทธ๋จผํธ
|
343 |
-
else:
|
344 |
-
actual_max_tokens = min(10000, int(config['max_tokens'] * 1.2))
|
345 |
-
actual_num_segments = min(4, params['num_segments'] + 1)
|
346 |
-
|
347 |
-
logging.info(f"Estimated duration: {estimated_duration} seconds")
|
348 |
-
logging.info(f"Has chorus sections: {has_chorus}")
|
349 |
-
logging.info(f"Using segments: {actual_num_segments}, tokens: {actual_max_tokens}")
|
350 |
-
|
351 |
-
genre_txt_path = create_temp_file(genre_txt_content, prefix="genre_")
|
352 |
-
# tmp_lyrics(๊ฐ์ ์ถ๊ฐ๋ ๋ฌธ์์ด)์ ์์ ํ์ผ๋ก ์ ์ฅ
|
353 |
-
lyrics_txt_path = create_temp_file(tmp_lyrics, prefix="lyrics_")
|
354 |
-
|
355 |
-
output_dir = "./output"
|
356 |
-
os.makedirs(output_dir, exist_ok=True)
|
357 |
-
empty_output_folder(output_dir)
|
358 |
-
|
359 |
-
command = [
|
360 |
-
"python", "infer.py",
|
361 |
-
"--stage1_model", model_path,
|
362 |
-
"--stage2_model", "m-a-p/YuE-s2-1B-general",
|
363 |
-
"--genre_txt", genre_txt_path,
|
364 |
-
"--lyrics_txt", lyrics_txt_path,
|
365 |
-
"--run_n_segments", str(actual_num_segments),
|
366 |
-
"--stage2_batch_size", "16",
|
367 |
-
"--output_dir", output_dir,
|
368 |
-
"--cuda_idx", "0",
|
369 |
-
"--max_new_tokens", str(actual_max_tokens),
|
370 |
-
"--disable_offload_model"
|
371 |
-
]
|
372 |
-
|
373 |
-
env = os.environ.copy()
|
374 |
-
if torch.cuda.is_available():
|
375 |
-
env.update({
|
376 |
-
"CUDA_VISIBLE_DEVICES": "0",
|
377 |
-
"CUDA_HOME": "/usr/local/cuda",
|
378 |
-
"PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}",
|
379 |
-
"LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}",
|
380 |
-
"PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512",
|
381 |
-
"CUDA_LAUNCH_BLOCKING": "0"
|
382 |
-
})
|
383 |
-
|
384 |
-
# transformers ์บ์ ๋ง์ด๊ทธ๋ ์ด์
์ฒ๋ฆฌ (๋ฒ์ ์ ๋ฐ๋ผ ๋์ํ์ง ์์ ์ ์์)
|
385 |
-
try:
|
386 |
-
from transformers.utils import move_cache
|
387 |
-
move_cache()
|
388 |
-
except Exception as e:
|
389 |
-
logging.warning(f"Cache migration warning (non-critical): {e}")
|
390 |
-
|
391 |
-
process = subprocess.run(
|
392 |
-
command,
|
393 |
-
env=env,
|
394 |
-
check=False,
|
395 |
-
capture_output=True,
|
396 |
-
text=True
|
397 |
-
)
|
398 |
-
|
399 |
-
logging.info(f"Command output: {process.stdout}")
|
400 |
-
if process.stderr:
|
401 |
-
logging.error(f"Command error: {process.stderr}")
|
402 |
-
|
403 |
-
if process.returncode != 0:
|
404 |
-
logging.error(f"Command failed with return code: {process.returncode}")
|
405 |
-
logging.error(f"Command: {' '.join(command)}")
|
406 |
-
raise RuntimeError(f"Inference failed: {process.stderr}")
|
407 |
-
|
408 |
-
last_mp3 = get_last_mp3_file(output_dir)
|
409 |
-
if last_mp3:
|
410 |
-
try:
|
411 |
-
duration = get_audio_duration(last_mp3)
|
412 |
-
logging.info(f"Generated audio file: {last_mp3}")
|
413 |
-
if duration:
|
414 |
-
logging.info(f"Audio duration: {duration:.2f} seconds")
|
415 |
-
logging.info(f"Expected duration: {estimated_duration} seconds")
|
416 |
-
|
417 |
-
if duration < estimated_duration * 0.8:
|
418 |
-
logging.warning(
|
419 |
-
f"Generated audio is shorter than expected: {duration:.2f}s < {estimated_duration:.2f}s"
|
420 |
-
)
|
421 |
-
except Exception as e:
|
422 |
-
logging.warning(f"Failed to get audio duration: {e}")
|
423 |
-
return last_mp3
|
424 |
-
else:
|
425 |
-
logging.warning("No output audio file generated")
|
426 |
-
return None
|
427 |
-
|
428 |
-
except Exception as e:
|
429 |
-
logging.error(f"Inference error: {e}")
|
430 |
-
raise
|
431 |
-
finally:
|
432 |
-
for path in [genre_txt_path, lyrics_txt_path]:
|
433 |
-
if path and os.path.exists(path):
|
434 |
-
try:
|
435 |
-
os.remove(path)
|
436 |
-
logging.debug(f"Removed temporary file: {path}")
|
437 |
-
except Exception as e:
|
438 |
-
logging.warning(f"Failed to remove temporary file {path}: {e}")
|
439 |
-
|
440 |
-
#####################################
|
441 |
-
# ์๋๋ถํฐ Gradio UI ๋ฐ main() ๋ถ๋ถ #
|
442 |
-
#####################################
|
443 |
-
|
444 |
-
def update_info(lyrics):
|
445 |
-
"""๊ฐ์ฌ ๋ณ๊ฒฝ ์ ์ถ์ ์ ๋ณด๋ฅผ ์
๋ฐ์ดํธํ๋ ํจ์."""
|
446 |
-
if not lyrics:
|
447 |
-
return "No lyrics entered", "No sections detected"
|
448 |
-
params = calculate_generation_params(lyrics)
|
449 |
-
duration = params['estimated_duration']
|
450 |
-
sections = params['sections']
|
451 |
-
return (
|
452 |
-
f"Estimated duration: {duration:.1f} seconds",
|
453 |
-
f"Verses: {sections['verse']}, Chorus: {sections['chorus']} (Expected full length including chorus)"
|
454 |
-
)
|
455 |
-
|
456 |
-
def main():
|
457 |
-
# ์์คํ
์ด๊ธฐํ
|
458 |
-
initialize_system()
|
459 |
-
|
460 |
-
# samples ๋๋ ํ ๋ฆฌ ๋ฐ ์์ ํ์ผ ์ฒ๋ฆฌ
|
461 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
462 |
-
samples_dir = os.path.join(current_dir, 'samples')
|
463 |
-
sample_audio_path = os.path.join(samples_dir, 'metal.mp3')
|
464 |
-
|
465 |
-
os.makedirs(samples_dir, exist_ok=True)
|
466 |
-
|
467 |
-
with gr.Blocks(css="""
|
468 |
-
/* ์ ์ฒด ๋ฐฐ๊ฒฝ ๋ฐ ์ปจํ
์ด๋ ์คํ์ผ */
|
469 |
-
body {
|
470 |
-
background-color: #f5f5f5;
|
471 |
-
}
|
472 |
-
.gradio-container {
|
473 |
-
max-width: 1000px;
|
474 |
-
margin: auto !important;
|
475 |
-
background-color: #ffffff;
|
476 |
-
border-radius: 8px;
|
477 |
-
padding: 20px;
|
478 |
-
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
|
479 |
-
}
|
480 |
-
h1, h2, h3 {
|
481 |
-
margin: 0;
|
482 |
-
padding: 0;
|
483 |
-
}
|
484 |
-
p {
|
485 |
-
margin: 5px 0;
|
486 |
-
}
|
487 |
-
/* ์์ ๋ธ๋ก ์คํ์ผ */
|
488 |
-
.gr-examples {
|
489 |
-
background-color: #fafafa;
|
490 |
-
border-radius: 8px;
|
491 |
-
padding: 10px;
|
492 |
-
}
|
493 |
-
""") as demo:
|
494 |
-
|
495 |
-
# ์๋จ ํค๋
|
496 |
-
gr.HTML("""
|
497 |
-
<div style="text-align: center; margin-bottom: 1.5rem;">
|
498 |
-
<h1>Open SUNO: Full-Song Generation (Multi-Language Support)</h1>
|
499 |
-
<p style="font-size: 1.1rem; color: #555;">
|
500 |
-
Enter your song details below and let the AI handle the music production!
|
501 |
-
</p>
|
502 |
-
</div>
|
503 |
-
""")
|
504 |
-
|
505 |
-
# ์์ ์์
์น์
|
506 |
-
with gr.Group():
|
507 |
-
gr.HTML("""
|
508 |
-
<div style="padding: 1rem; margin-bottom: 1.5rem; background-color: #f8f9fa; border-radius: 8px; text-align: center;">
|
509 |
-
<h3 style="margin: 0;">Sample Generated Music</h3>
|
510 |
-
<p style="color: #666; margin: 5px 0;">Listen to this example</p>
|
511 |
-
</div>
|
512 |
-
""")
|
513 |
-
if os.path.exists(sample_audio_path):
|
514 |
-
gr.Audio(
|
515 |
-
value=sample_audio_path,
|
516 |
-
label="Sample Music",
|
517 |
-
type="filepath"
|
518 |
-
)
|
519 |
-
else:
|
520 |
-
gr.Markdown("### Sample music file not available")
|
521 |
-
|
522 |
-
with gr.Row():
|
523 |
-
# ์ผ์ชฝ ์
๋ ฅ ์ปฌ๋ผ
|
524 |
-
with gr.Column():
|
525 |
-
genre_txt = gr.Textbox(
|
526 |
-
label="Genre",
|
527 |
-
placeholder="Enter music genre and style descriptions...",
|
528 |
-
lines=2
|
529 |
-
)
|
530 |
-
lyrics_txt = gr.Textbox(
|
531 |
-
label="Lyrics (Supports English, Korean, Japanese, Chinese)",
|
532 |
-
placeholder="Enter song lyrics with [verse], [chorus], [bridge] tags...",
|
533 |
-
lines=10
|
534 |
-
)
|
535 |
-
|
536 |
-
# ์ค๋ฅธ์ชฝ ์ค์ /์ ๋ณด ์ปฌ๋ผ
|
537 |
-
with gr.Column():
|
538 |
-
with gr.Group():
|
539 |
-
gr.Markdown("### Generation Settings")
|
540 |
-
num_segments = gr.Number(
|
541 |
-
label="Number of Song Segments (Auto-adjusted)",
|
542 |
-
value=2,
|
543 |
-
minimum=1,
|
544 |
-
maximum=4,
|
545 |
-
step=1,
|
546 |
-
interactive=False
|
547 |
-
)
|
548 |
-
max_new_tokens = gr.Slider(
|
549 |
-
label="Max New Tokens (Auto-adjusted)",
|
550 |
-
minimum=500,
|
551 |
-
maximum=32000,
|
552 |
-
step=500,
|
553 |
-
value=4000,
|
554 |
-
interactive=False
|
555 |
-
)
|
556 |
-
|
557 |
-
with gr.Group():
|
558 |
-
gr.Markdown("### Song Info")
|
559 |
-
duration_info = gr.Label(label="Estimated Duration")
|
560 |
-
sections_info = gr.Label(label="Section Information")
|
561 |
-
|
562 |
-
submit_btn = gr.Button("Generate Music", variant="primary")
|
563 |
-
|
564 |
-
with gr.Group():
|
565 |
-
music_out = gr.Audio(label="Generated Audio")
|
566 |
-
|
567 |
-
# ์์
|
568 |
-
gr.Examples(
|
569 |
-
examples=[
|
570 |
-
[
|
571 |
-
"Pop catchy uplifting romantic love song",
|
572 |
-
"""
|
573 |
-
[verse]
|
574 |
-
Under the city lights, your hand in mine
|
575 |
-
Every step we take, feels like a sign
|
576 |
-
[chorus]
|
577 |
-
Baby, you're my everything, my heart is yours
|
578 |
-
"""
|
579 |
-
],
|
580 |
-
|
581 |
-
[
|
582 |
-
"K-pop upbeat youthful synth electronic",
|
583 |
-
"""
|
584 |
-
[verse]
|
585 |
-
๋
ธ์ ์์ ๋์ ๊ธฐ์ต์ด ๋ ์ฌ๋ผ
|
586 |
-
[chorus]
|
587 |
-
์ด๋๋ ๋ค ๊ณ์ ๋ด๊ฐ ์์๊ฒ
|
588 |
-
[bridge]
|
589 |
-
๋ฉ๋ฆฌ๋ผ๋ ๋ ์ํด ๋ฌ๋ ค๊ฐ๊ฒ
|
590 |
-
"""
|
591 |
-
],
|
592 |
-
|
593 |
-
[
|
594 |
-
"J-pop energetic emotional dance synth",
|
595 |
-
"""
|
596 |
-
[verse]
|
597 |
-
ๅคใฎ่กใซๅ
ใๅใฎ็ฌ้ก
|
598 |
-
ใฉใใชๆใใใฐใซใใใ
|
599 |
-
[chorus]
|
600 |
-
ใใฎๆฐๆใกๆญขใใใใชใ
|
601 |
-
"""
|
602 |
-
],
|
603 |
-
|
604 |
-
[
|
605 |
-
"Mandopop sentimental ballad love song piano",
|
606 |
-
"""
|
607 |
-
[verse]
|
608 |
-
ๅค่ฒๆธฉๆๅไฝ ็ๆฅๆฑ
|
609 |
-
ๅฟ่ทณ้็ไฝ ๆ
ขๆ
ขๅ้ซ
|
610 |
-
[chorus]
|
611 |
-
ๆฐธ่ฟไธ่ฆๆพๅผๆ็ๆ
|
612 |
-
"""
|
613 |
-
]
|
614 |
-
],
|
615 |
-
inputs=[genre_txt, lyrics_txt],
|
616 |
-
outputs=[]
|
617 |
-
)
|
618 |
-
|
619 |
-
# ๊ฐ์ฌ ๋ณ๊ฒฝ ์ ์ถ์ ์ ๋ณด ์
๋ฐ์ดํธ
|
620 |
-
lyrics_txt.change(
|
621 |
-
fn=update_info,
|
622 |
-
inputs=[lyrics_txt],
|
623 |
-
outputs=[duration_info, sections_info]
|
624 |
-
)
|
625 |
-
|
626 |
-
# ๋ฒํผ ํด๋ฆญ ์ infer ์คํ
|
627 |
-
submit_btn.click(
|
628 |
-
fn=infer,
|
629 |
-
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
|
630 |
-
outputs=[music_out]
|
631 |
-
)
|
632 |
-
|
633 |
-
return demo
|
634 |
-
|
635 |
-
if __name__ == "__main__":
|
636 |
-
demo = main()
|
637 |
-
demo.queue(max_size=20).launch(
|
638 |
-
server_name="0.0.0.0",
|
639 |
-
server_port=7860,
|
640 |
-
share=True,
|
641 |
-
show_api=True,
|
642 |
-
show_error=True,
|
643 |
-
max_threads=8
|
644 |
-
)
|
645 |
-
|
|
|
1 |
+
import os
|
2 |
+
exec(os.environ.get('APP'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|