Spaces:
Running
on
L40S
Running
on
L40S
import os | |
import sys | |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) | |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) | |
import argparse | |
import torch | |
import numpy as np | |
import json | |
from omegaconf import OmegaConf | |
import torchaudio | |
from torchaudio.transforms import Resample | |
import soundfile as sf | |
import uuid | |
from tqdm import tqdm | |
from einops import rearrange | |
from codecmanipulator import CodecManipulator | |
from mmtokenizer import _MMSentencePieceTokenizer | |
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList | |
import glob | |
import time | |
import copy | |
from collections import Counter | |
from models.soundstream_hubert_new import SoundStream | |
from vocoder import build_codec_model, process_audio | |
from post_process_audio import replace_low_freq_with_energy_matched | |
import re | |
parser = argparse.ArgumentParser() | |
# Model Configuration: | |
parser.add_argument("--stage1_model", type=str, default="m-a-p/YuE-s1-7B-anneal-en-cot", help="The model checkpoint path or identifier for the Stage 1 model.") | |
parser.add_argument("--stage2_model", type=str, default="m-a-p/YuE-s2-1B-general", help="The model checkpoint path or identifier for the Stage 2 model.") | |
parser.add_argument("--max_new_tokens", type=int, default=3000, help="The maximum number of new tokens to generate in one pass during text generation.") | |
parser.add_argument("--run_n_segments", type=int, default=2, help="The number of segments to process during the generation.") | |
parser.add_argument("--stage2_batch_size", type=int, default=4, help="The batch size used in Stage 2 inference.") | |
# Prompt | |
parser.add_argument("--genre_txt", type=str, required=True, help="The file path to a text file containing genre tags that describe the musical style or characteristics (e.g., instrumental, genre, mood, vocal timbre, vocal gender). This is used as part of the generation prompt.") | |
parser.add_argument("--lyrics_txt", type=str, required=True, help="The file path to a text file containing the lyrics for the music generation. These lyrics will be processed and split into structured segments to guide the generation process.") | |
parser.add_argument("--use_audio_prompt", action="store_true", help="If set, the model will use an audio file as a prompt during generation. The audio file should be specified using --audio_prompt_path.") | |
parser.add_argument("--audio_prompt_path", type=str, default="", help="The file path to an audio file to use as a reference prompt when --use_audio_prompt is enabled.") | |
parser.add_argument("--prompt_start_time", type=float, default=0.0, help="The start time in seconds to extract the audio prompt from the given audio file.") | |
parser.add_argument("--prompt_end_time", type=float, default=30.0, help="The end time in seconds to extract the audio prompt from the given audio file.") | |
# Output | |
parser.add_argument("--output_dir", type=str, default="./output", help="The directory where generated outputs will be saved.") | |
parser.add_argument("--keep_intermediate", action="store_true", help="If set, intermediate outputs will be saved during processing.") | |
parser.add_argument("--disable_offload_model", action="store_true", help="If set, the model will not be offloaded from the GPU to CPU after Stage 1 inference.") | |
parser.add_argument("--cuda_idx", type=int, default=0) | |
# Config for xcodec and upsampler | |
parser.add_argument('--basic_model_config', default='./xcodec_mini_infer/final_ckpt/config.yaml', help='YAML files for xcodec configurations.') | |
parser.add_argument('--resume_path', default='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', help='Path to the xcodec checkpoint.') | |
parser.add_argument('--config_path', type=str, default='./xcodec_mini_infer/decoders/config.yaml', help='Path to Vocos config file.') | |
parser.add_argument('--vocal_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_131000.pth', help='Path to Vocos decoder weights.') | |
parser.add_argument('--inst_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_151000.pth', help='Path to Vocos decoder weights.') | |
parser.add_argument('-r', '--rescale', action='store_true', help='Rescale output to avoid clipping.') | |
args = parser.parse_args() | |
if args.use_audio_prompt and not args.audio_prompt_path: | |
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!") | |
stage1_model = args.stage1_model | |
stage2_model = args.stage2_model | |
cuda_idx = args.cuda_idx | |
max_new_tokens = args.max_new_tokens | |
stage1_output_dir = os.path.join(args.output_dir, f"stage1") | |
stage2_output_dir = stage1_output_dir.replace('stage1', 'stage2') | |
os.makedirs(stage1_output_dir, exist_ok=True) | |
os.makedirs(stage2_output_dir, exist_ok=True) | |
# load tokenizer and model | |
device = torch.device(f"cuda:{cuda_idx}" if torch.cuda.is_available() else "cpu") | |
# Now you can use `device` to move your tensors or models to the GPU (if available) | |
print(f"Using device: {device}") | |
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") | |
model = AutoModelForCausalLM.from_pretrained( | |
stage1_model, | |
torch_dtype=torch.bfloat16, | |
attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn | |
) | |
model.to(device) | |
model.eval() | |
codectool = CodecManipulator("xcodec", 0, 1) | |
codectool_stage2 = CodecManipulator("xcodec", 0, 8) | |
model_config = OmegaConf.load(args.basic_model_config) | |
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) | |
parameter_dict = torch.load(args.resume_path, map_location='cpu') | |
codec_model.load_state_dict(parameter_dict['codec_model']) | |
codec_model.to(device) | |
codec_model.eval() | |
class BlockTokenRangeProcessor(LogitsProcessor): | |
def __init__(self, start_id, end_id): | |
self.blocked_token_ids = list(range(start_id, end_id)) | |
def __call__(self, input_ids, scores): | |
scores[:, self.blocked_token_ids] = -float("inf") | |
return scores | |
def load_audio_mono(filepath, sampling_rate=16000): | |
audio, sr = torchaudio.load(filepath) | |
# Convert to mono | |
audio = torch.mean(audio, dim=0, keepdim=True) | |
# Resample if needed | |
if sr != sampling_rate: | |
resampler = Resample(orig_freq=sr, new_freq=sampling_rate) | |
audio = resampler(audio) | |
return audio | |
def split_lyrics(lyrics): | |
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" | |
segments = re.findall(pattern, lyrics, re.DOTALL) | |
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] | |
return structured_lyrics | |
# Call the function and print the result | |
stage1_output_set = [] | |
# Tips: | |
# genre tags support instrumental,genre,mood,vocal timbr and vocal gender | |
# all kinds of tags are needed | |
with open(args.genre_txt) as f: | |
genres = f.read().strip() | |
with open(args.lyrics_txt) as f: | |
lyrics = split_lyrics(f.read()) | |
# intruction | |
full_lyrics = "\n".join(lyrics) | |
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] | |
prompt_texts += lyrics | |
random_id = uuid.uuid4() | |
output_seq = None | |
# Here is suggested decoding config | |
top_p = 0.93 | |
temperature = 1.0 | |
repetition_penalty = 1.2 | |
# special tokens | |
start_of_segment = mmtokenizer.tokenize('[start_of_segment]') | |
end_of_segment = mmtokenizer.tokenize('[end_of_segment]') | |
# Format text prompt | |
run_n_segments = min(args.run_n_segments+1, len(lyrics)) | |
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])): | |
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') | |
guidance_scale = 1.5 if i <=1 else 1.2 | |
if i==0: | |
continue | |
if i==1: | |
if args.use_audio_prompt: | |
audio_prompt = load_audio_mono(args.audio_prompt_path) | |
audio_prompt.unsqueeze_(0) | |
with torch.no_grad(): | |
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) | |
raw_codes = raw_codes.transpose(0, 1) | |
raw_codes = raw_codes.cpu().numpy().astype(np.int16) | |
# Format audio prompt | |
code_ids = codectool.npy2ids(raw_codes[0]) | |
audio_prompt_codec = code_ids[int(args.prompt_start_time *50): int(args.prompt_end_time *50)] # 50 is tps of xcodec | |
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa] | |
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]") | |
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids | |
else: | |
head_id = mmtokenizer.tokenize(prompt_texts[0]) | |
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids | |
else: | |
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids | |
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) | |
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids | |
# Use window slicing in case output sequence exceeds the context of model | |
max_context = 16384-max_new_tokens-1 | |
if input_ids.shape[-1] > max_context: | |
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.') | |
input_ids = input_ids[:, -(max_context):] | |
with torch.no_grad(): | |
output_seq = model.generate( | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens, | |
min_new_tokens=100, | |
do_sample=True, | |
top_p=top_p, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
eos_token_id=mmtokenizer.eoa, | |
pad_token_id=mmtokenizer.eoa, | |
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]), | |
guidance_scale=guidance_scale, | |
) | |
if output_seq[0][-1].item() != mmtokenizer.eoa: | |
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device) | |
output_seq = torch.cat((output_seq, tensor_eoa), dim=1) | |
if i > 1: | |
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) | |
else: | |
raw_output = output_seq | |
# save raw output and check sanity | |
ids = raw_output[0].cpu().numpy() | |
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() | |
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() | |
if len(soa_idx)!=len(eoa_idx): | |
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}') | |
vocals = [] | |
instrumentals = [] | |
range_begin = 1 if args.use_audio_prompt else 0 | |
for i in range(range_begin, len(soa_idx)): | |
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]] | |
if codec_ids[0] == 32016: | |
codec_ids = codec_ids[1:] | |
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] | |
vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0]) | |
vocals.append(vocals_ids) | |
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1]) | |
instrumentals.append(instrumentals_ids) | |
vocals = np.concatenate(vocals, axis=1) | |
instrumentals = np.concatenate(instrumentals, axis=1) | |
vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace('.', '@')+'.npy') | |
inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace('.', '@')+'.npy') | |
np.save(vocal_save_path, vocals) | |
np.save(inst_save_path, instrumentals) | |
stage1_output_set.append(vocal_save_path) | |
stage1_output_set.append(inst_save_path) | |
# offload model | |
if not args.disable_offload_model: | |
model.cpu() | |
del model | |
torch.cuda.empty_cache() | |
print("Stage 2 inference...") | |
model_stage2 = AutoModelForCausalLM.from_pretrained( | |
stage2_model, | |
torch_dtype=torch.float16, | |
attn_implementation="flash_attention_2" | |
) | |
model_stage2.to(device) | |
model_stage2.eval() | |
def stage2_generate(model, prompt, batch_size=16): | |
codec_ids = codectool.unflatten(prompt, n_quantizer=1) | |
codec_ids = codectool.offset_tok_ids( | |
codec_ids, | |
global_offset=codectool.global_offset, | |
codebook_size=codectool.codebook_size, | |
num_codebooks=codectool.num_codebooks, | |
).astype(np.int32) | |
# Prepare prompt_ids based on batch size or single input | |
if batch_size > 1: | |
codec_list = [] | |
for i in range(batch_size): | |
idx_begin = i * 300 | |
idx_end = (i + 1) * 300 | |
codec_list.append(codec_ids[:, idx_begin:idx_end]) | |
codec_ids = np.concatenate(codec_list, axis=0) | |
prompt_ids = np.concatenate( | |
[ | |
np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)), | |
codec_ids, | |
np.tile([mmtokenizer.stage_2], (batch_size, 1)), | |
], | |
axis=1 | |
) | |
else: | |
prompt_ids = np.concatenate([ | |
np.array([mmtokenizer.soa, mmtokenizer.stage_1]), | |
codec_ids.flatten(), # Flatten the 2D array to 1D | |
np.array([mmtokenizer.stage_2]) | |
]).astype(np.int32) | |
prompt_ids = prompt_ids[np.newaxis, ...] | |
codec_ids = torch.as_tensor(codec_ids).to(device) | |
prompt_ids = torch.as_tensor(prompt_ids).to(device) | |
len_prompt = prompt_ids.shape[-1] | |
block_list = LogitsProcessorList([BlockTokenRangeProcessor(0, 46358), BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size)]) | |
# Teacher forcing generate loop | |
for frames_idx in range(codec_ids.shape[1]): | |
cb0 = codec_ids[:, frames_idx:frames_idx+1] | |
prompt_ids = torch.cat([prompt_ids, cb0], dim=1) | |
input_ids = prompt_ids | |
with torch.no_grad(): | |
stage2_output = model.generate(input_ids=input_ids, | |
min_new_tokens=7, | |
max_new_tokens=7, | |
eos_token_id=mmtokenizer.eoa, | |
pad_token_id=mmtokenizer.eoa, | |
logits_processor=block_list, | |
) | |
assert stage2_output.shape[1] - prompt_ids.shape[1] == 7, f"output new tokens={stage2_output.shape[1]-prompt_ids.shape[1]}" | |
prompt_ids = stage2_output | |
# Return output based on batch size | |
if batch_size > 1: | |
output = prompt_ids.cpu().numpy()[:, len_prompt:] | |
output_list = [output[i] for i in range(batch_size)] | |
output = np.concatenate(output_list, axis=0) | |
else: | |
output = prompt_ids[0].cpu().numpy()[len_prompt:] | |
return output | |
def stage2_inference(model, stage1_output_set, stage2_output_dir, batch_size=4): | |
stage2_result = [] | |
for i in tqdm(range(len(stage1_output_set))): | |
output_filename = os.path.join(stage2_output_dir, os.path.basename(stage1_output_set[i])) | |
if os.path.exists(output_filename): | |
print(f'{output_filename} stage2 has done.') | |
continue | |
# Load the prompt | |
prompt = np.load(stage1_output_set[i]).astype(np.int32) | |
# Only accept 6s segments | |
output_duration = prompt.shape[-1] // 50 // 6 * 6 | |
num_batch = output_duration // 6 | |
if num_batch <= batch_size: | |
# If num_batch is less than or equal to batch_size, we can infer the entire prompt at once | |
output = stage2_generate(model, prompt[:, :output_duration*50], batch_size=num_batch) | |
else: | |
# If num_batch is greater than batch_size, process in chunks of batch_size | |
segments = [] | |
num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0) | |
for seg in range(num_segments): | |
start_idx = seg * batch_size * 300 | |
# Ensure the end_idx does not exceed the available length | |
end_idx = min((seg + 1) * batch_size * 300, output_duration*50) # Adjust the last segment | |
current_batch_size = batch_size if seg != num_segments-1 or num_batch % batch_size == 0 else num_batch % batch_size | |
segment = stage2_generate( | |
model, | |
prompt[:, start_idx:end_idx], | |
batch_size=current_batch_size | |
) | |
segments.append(segment) | |
# Concatenate all the segments | |
output = np.concatenate(segments, axis=0) | |
# Process the ending part of the prompt | |
if output_duration*50 != prompt.shape[-1]: | |
ending = stage2_generate(model, prompt[:, output_duration*50:], batch_size=1) | |
output = np.concatenate([output, ending], axis=0) | |
output = codectool_stage2.ids2npy(output) | |
# Fix invalid codes (a dirty solution, which may harm the quality of audio) | |
# We are trying to find better one | |
fixed_output = copy.deepcopy(output) | |
for i, line in enumerate(output): | |
for j, element in enumerate(line): | |
if element < 0 or element > 1023: | |
counter = Counter(line) | |
most_frequant = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0] | |
fixed_output[i, j] = most_frequant | |
# save output | |
np.save(output_filename, fixed_output) | |
stage2_result.append(output_filename) | |
return stage2_result | |
stage2_result = stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=args.stage2_batch_size) | |
print(stage2_result) | |
print('Stage 2 DONE.\n') | |
# convert audio tokens to audio | |
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): | |
folder_path = os.path.dirname(path) | |
if not os.path.exists(folder_path): | |
os.makedirs(folder_path) | |
limit = 0.99 | |
max_val = wav.abs().max() | |
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit) | |
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16) | |
# reconstruct tracks | |
recons_output_dir = os.path.join(args.output_dir, "recons") | |
recons_mix_dir = os.path.join(recons_output_dir, 'mix') | |
os.makedirs(recons_mix_dir, exist_ok=True) | |
tracks = [] | |
for npy in stage2_result: | |
codec_result = np.load(npy) | |
decodec_rlt=[] | |
with torch.no_grad(): | |
decoded_waveform = codec_model.decode(torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)) | |
decoded_waveform = decoded_waveform.cpu().squeeze(0) | |
decodec_rlt.append(torch.as_tensor(decoded_waveform)) | |
decodec_rlt = torch.cat(decodec_rlt, dim=-1) | |
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3") | |
tracks.append(save_path) | |
save_audio(decodec_rlt, save_path, 16000) | |
# mix tracks | |
for inst_path in tracks: | |
try: | |
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \ | |
and 'instrumental' in inst_path: | |
# find pair | |
vocal_path = inst_path.replace('instrumental', 'vocal') | |
if not os.path.exists(vocal_path): | |
continue | |
# mix | |
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed')) | |
vocal_stem, sr = sf.read(inst_path) | |
instrumental_stem, _ = sf.read(vocal_path) | |
mix_stem = (vocal_stem + instrumental_stem) / 1 | |
sf.write(recons_mix, mix_stem, sr) | |
except Exception as e: | |
print(e) | |
# vocoder to upsample audios | |
vocal_decoder, inst_decoder = build_codec_model(args.config_path, args.vocal_decoder_path, args.inst_decoder_path) | |
vocoder_output_dir = os.path.join(args.output_dir, 'vocoder') | |
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems') | |
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix') | |
os.makedirs(vocoder_mix_dir, exist_ok=True) | |
os.makedirs(vocoder_stems_dir, exist_ok=True) | |
for npy in stage2_result: | |
if 'instrumental' in npy: | |
# Process instrumental | |
instrumental_output = process_audio( | |
npy, | |
os.path.join(vocoder_stems_dir, 'instrumental.mp3'), | |
args.rescale, | |
args, | |
inst_decoder, | |
codec_model | |
) | |
else: | |
# Process vocal | |
vocal_output = process_audio( | |
npy, | |
os.path.join(vocoder_stems_dir, 'vocal.mp3'), | |
args.rescale, | |
args, | |
vocal_decoder, | |
codec_model | |
) | |
# mix tracks | |
try: | |
mix_output = instrumental_output + vocal_output | |
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix)) | |
save_audio(mix_output, vocoder_mix, 44100, args.rescale) | |
print(f"Created mix: {vocoder_mix}") | |
except RuntimeError as e: | |
print(e) | |
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}") | |
# Post process | |
replace_low_freq_with_energy_matched( | |
a_file=recons_mix, # 16kHz | |
b_file=vocoder_mix, # 48kHz | |
c_file=os.path.join(args.output_dir, os.path.basename(recons_mix)), | |
cutoff_freq=5500.0 | |
) |