Manju / app.py
Manjushri's picture
Create app.py
d8fcee4 verified
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline
device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, refine, high_noise_frac, upscale):
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
if Model == "PhotoReal":
pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1")
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
torch.cuda.empty_cache()
if refine == "Yes":
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
torch.cuda.empty_cache()
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
torch.cuda.empty_cache()
if upscale == "Yes":
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
torch.cuda.empty_cache()
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return upscaled
else:
return image
else:
if upscale == "Yes":
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
upscaler.enable_xformers_memory_efficient_attention()
upscaler = upscaler.to(device)
torch.cuda.empty_cache()
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return upscaled
else:
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
torch.cuda.empty_cache()
return image
if Model == "Anime":
anime = DiffusionPipeline.from_pretrained("circulus/canvers-anime-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-anime-v3.8.1")
anime.enable_xformers_memory_efficient_attention()
anime = anime.to(device)
torch.cuda.empty_cache()
if refine == "Yes":
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
torch.cuda.empty_cache()
int_image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
torch.cuda.empty_cache()
if upscale == "Yes":
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
torch.cuda.empty_cache()
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return upscaled
else:
return image
else:
if upscale == "Yes":
image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
upscaler.enable_xformers_memory_efficient_attention()
upscaler = upscaler.to(device)
torch.cuda.empty_cache()
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return upscaled
else:
image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
torch.cuda.empty_cache()
return image
if Model == "Disney":
disney = DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1")
disney.enable_xformers_memory_efficient_attention()
disney = disney.to(device)
torch.cuda.empty_cache()
if refine == "Yes":
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
torch.cuda.empty_cache()
int_image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
torch.cuda.empty_cache()
if upscale == "Yes":
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
torch.cuda.empty_cache()
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return upscaled
else:
return image
else:
if upscale == "Yes":
image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
upscaler.enable_xformers_memory_efficient_attention()
upscaler = upscaler.to(device)
torch.cuda.empty_cache()
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return upscaled
else:
image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
torch.cuda.empty_cache()
return image
if Model == "StoryBook":
story = DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1")
story.enable_xformers_memory_efficient_attention()
story = story.to(device)
torch.cuda.empty_cache()
if refine == "Yes":
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
torch.cuda.empty_cache()
int_image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
torch.cuda.empty_cache()
if upscale == "Yes":
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
torch.cuda.empty_cache()
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return upscaled
else:
return image
else:
if upscale == "Yes":
image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
upscaler.enable_xformers_memory_efficient_attention()
upscaler = upscaler.to(device)
torch.cuda.empty_cache()
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return upscaled
else:
image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
torch.cuda.empty_cache()
return image
if Model == "SemiReal":
semi = DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1")
semi.enable_xformers_memory_efficient_attention()
semi = semi.to(device)
torch.cuda.empty_cache()
if refine == "Yes":
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
torch.cuda.empty_cache()
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
image = refiner(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
torch.cuda.empty_cache()
if upscale == "Yes":
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
torch.cuda.empty_cache()
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return upscaled
else:
return image
else:
if upscale == "Yes":
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
upscaler.enable_xformers_memory_efficient_attention()
upscaler = upscaler.to(device)
torch.cuda.empty_cache()
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return upscaled
else:
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
torch.cuda.empty_cache()
return image
if Model == "Animagine XL 3.0":
animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0")
animagine.enable_xformers_memory_efficient_attention()
animagine = animagine.to(device)
torch.cuda.empty_cache()
if refine == "Yes":
torch.cuda.empty_cache()
torch.cuda.max_memory_allocated(device=device)
int_image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
torch.cuda.empty_cache()
animagine = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
animagine.enable_xformers_memory_efficient_attention()
animagine = animagine.to(device)
torch.cuda.empty_cache()
image = animagine(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
torch.cuda.empty_cache()
if upscale == "Yes":
animagine = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
animagine.enable_xformers_memory_efficient_attention()
animagine = animagine.to(device)
torch.cuda.empty_cache()
upscaled = animagine(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return upscaled
else:
return image
else:
if upscale == "Yes":
image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
upscaler.enable_xformers_memory_efficient_attention()
upscaler = upscaler.to(device)
torch.cuda.empty_cache()
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return upscaled
else:
image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
torch.cuda.empty_cache()
return image
if Model == "SDXL 1.0":
torch.cuda.empty_cache()
torch.cuda.max_memory_allocated(device=device)
sdxl = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
sdxl.enable_xformers_memory_efficient_attention()
sdxl = sdxl.to(device)
torch.cuda.empty_cache()
if refine == "Yes":
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
torch.cuda.empty_cache()
sdxl = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
sdxl.enable_xformers_memory_efficient_attention()
sdxl = sdxl.to(device)
torch.cuda.empty_cache()
refined = sdxl(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
torch.cuda.empty_cache()
if upscale == "Yes":
sdxl = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
sdxl.enable_xformers_memory_efficient_attention()
sdxl = sdxl.to(device)
torch.cuda.empty_cache()
upscaled = sdxl(prompt=Prompt, negative_prompt=negative_prompt, image=refined, num_inference_steps=15, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return upscaled
else:
return refined
else:
if upscale == "Yes":
image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
upscaler.enable_xformers_memory_efficient_attention()
upscaler = upscaler.to(device)
torch.cuda.empty_cache()
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return upscaled
else:
image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
torch.cuda.empty_cache()
return image
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Anime', 'Disney', 'StoryBook', 'SemiReal', 'Animagine XL 3.0', 'SDXL 1.0'], value='PhotoReal', label='Choose Model'),
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
gr.Slider(512, 1024, 768, step=128, label='Height'),
gr.Slider(512, 1024, 768, step=128, label='Width'),
gr.Slider(1, maximum=15, value=5, step=.25, label='Guidance Scale'),
gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'),
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'),
gr.Radio(["Yes", "No"], label='SDXL 1.0 Refiner: Use if the Image has too much Noise', value='No'),
gr.Slider(minimum=.9, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %'),
gr.Radio(["Yes", "No"], label = 'SD X2 Latent Upscaler?', value="No")],
outputs=gr.Image(label='Generated Image'),
title="Manju Dream Booth V1.7 with SDXL 1.0 Refiner and SD X2 Latent Upscaler - GPU",
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>BTC2: 3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br><br>Code Monkey: <a href=\"https://huggingface.co./Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)