Pratik Bhavsar
refactoring and auto theme
4a46abc
import gradio as gr
import promptquality as pq
from dotenv import load_dotenv
load_dotenv()
pq.login("https://console.demo.rungalileo.io")
from data_loader import (
load_data,
CATEGORIES,
METHODOLOGY,
HEADER_CONTENT,
CARDS,
DATASETS,
SCORES,
)
from tabs.leaderboard import create_leaderboard_tab, filter_leaderboard
from tabs.model_comparison import create_model_comparison_tab, compare_models
from tabs.data_exploration import create_exploration_tab
from chat import filter_and_update_display
def create_app():
df = load_data()
MODELS = [x.strip() for x in df["Model"].unique().tolist()]
with gr.Blocks(theme=gr.themes.Soft()) as app:
with gr.Tabs():
# Create tabs
lb_output, lb_plot1, lb_plot2 = create_leaderboard_tab(
df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS
)
mc_info, mc_plot = create_model_comparison_tab(df, HEADER_CONTENT, CARDS)
# exp_outputs = create_exploration_tab(
# df, MODELS, DATASETS, SCORES, HEADER_CONTENT
# )
# Initial loads
app.load(
fn=lambda: filter_leaderboard(
df, "All", list(CATEGORIES.keys())[0], "Performance"
),
outputs=[lb_output, lb_plot1, lb_plot2],
)
app.load(
fn=lambda: compare_models(
df, [df.sort_values("Model Avg", ascending=False).iloc[0]["Model"]]
),
outputs=[mc_info, mc_plot],
)
# app.load(
# fn=lambda: filter_and_update_display(MODELS[0], DATASETS[0], [], 0),
# outputs=exp_outputs,
# )
return app
demo = create_app()
demo.launch()