Spaces:
Running
Running
File size: 6,506 Bytes
10ad72f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import plotly.graph_objects as go
def setup_matplotlib():
"""Set up matplotlib configuration."""
matplotlib.use("Agg")
plt.close("all")
def get_performance_chart(df, category_name="Overall"):
plt.close("all")
score_column = "Category Score"
df_sorted = df.sort_values(score_column, ascending=True)
colors = {"Private": "#4F46E5", "Open source": "#16A34A"}
height = max(8, len(df_sorted) * 0.8)
fig, ax = plt.subplots(figsize=(16, height))
plt.rcParams.update({"font.size": 12})
try:
bars = ax.barh(
np.arange(len(df_sorted)),
df_sorted[score_column],
height=0.6,
color=[colors[t] for t in df_sorted["Model Type"]],
)
ax.set_title(
f"Model Performance Comparison - {category_name}",
pad=20,
fontsize=20,
fontweight="bold",
)
ax.set_xlabel("Average Score", fontsize=14, labelpad=10)
ax.set_xlim(0.0, 1.0)
ax.set_yticks(np.arange(len(df_sorted)))
ax.set_yticklabels(df_sorted["Model"], fontsize=12)
plt.subplots_adjust(left=0.35)
for i, v in enumerate(df_sorted[score_column]):
ax.text(
v + 0.01, i, f"{v:.3f}", va="center", fontsize=12, fontweight="bold"
)
ax.grid(True, axis="x", linestyle="--", alpha=0.2)
ax.spines[["top", "right"]].set_visible(False)
legend_elements = [
plt.Rectangle((0, 0), 1, 1, facecolor=color, label=label)
for label, color in colors.items()
]
ax.legend(
handles=legend_elements,
title="Model Type",
loc="lower right",
fontsize=12,
title_fontsize=14,
)
plt.tight_layout()
return fig
finally:
plt.close(fig)
def create_radar_plot(df, model_names):
datasets = [col for col in df.columns[7:] if col != "IO Cost"]
fig = go.Figure()
colors = ["rgba(99, 102, 241, 0.3)", "rgba(34, 197, 94, 0.3)"]
line_colors = ["#4F46E5", "#16A34A"]
for idx, model_name in enumerate(model_names):
model_data = df[df["Model"] == model_name].iloc[0]
values = [model_data[m] for m in datasets]
values.append(values[0])
datasets_plot = datasets + [datasets[0]]
fig.add_trace(
go.Scatterpolar(
r=values,
theta=datasets_plot,
fill="toself",
fillcolor=colors[idx % len(colors)],
line=dict(color=line_colors[idx % len(line_colors)], width=2),
name=model_name,
text=[f"{val:.3f}" for val in values],
textposition="middle right",
mode="lines+markers+text",
)
)
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True, range=[0, 1], showline=False, tickfont=dict(size=12)
),
angularaxis=dict(
tickfont=dict(size=13, family="Arial"),
rotation=90,
direction="clockwise",
),
),
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.2,
xanchor="center",
x=0.5,
font=dict(size=14),
),
title=dict(
text="Model Comparison",
x=0.5,
y=0.95,
font=dict(size=24, family="Arial", color="#1F2937"),
),
paper_bgcolor="white",
plot_bgcolor="white",
height=700,
width=900,
margin=dict(t=100, b=100, l=80, r=80),
)
return fig
def get_performance_cost_chart(df, category_name="Overall"):
# Create figure and axis with specified style
fig, ax = plt.subplots(figsize=(12, 8), dpi=300)
# Configure plot style
ax.grid(True, linestyle="--", alpha=0.15, which="both")
ax.set_facecolor("white")
fig.patch.set_facecolor("white")
colors = {"Private": "#4F46E5", "Open source": "#16A34A"}
performance_colors = ["#DCFCE7", "#FEF9C3", "#FEE2E2"]
score_column = "Category Score"
# Plot data points
for _, row in df.iterrows():
color = colors[row["Model Type"]]
size = 100 if row[score_column] > 0.85 else 80
edge_color = "#3730A3" if row["Model Type"] == "Private" else "#166534"
# Plot scatter points
ax.scatter(
row["IO Cost"],
row[score_column] * 100,
c=color,
s=size,
alpha=0.9,
edgecolor=edge_color,
linewidth=1,
zorder=5, # Ensure points are above grid
)
# Add annotations with model names
bbox_props = dict(boxstyle="round,pad=0.3", fc="white", ec="none", alpha=0.8)
ax.annotate(
f"{row['Model']}\n(${row['IO Cost']:.2f})",
(row["IO Cost"], row[score_column] * 100),
xytext=(5, 5),
textcoords="offset points",
fontsize=8,
bbox=bbox_props,
zorder=6,
)
# Configure axes
ax.set_xscale("log")
ax.set_xlim(0.08, 40) # Adjust based on your data range
ax.set_ylim(60, 95)
# Customize axis labels
ax.set_xlabel("I/O Cost per Million Tokens ($)", fontsize=10, labelpad=10)
ax.set_ylabel("Model Performance Score", fontsize=10, labelpad=10)
# Add legend
legend_elements = [
plt.scatter([], [], c=color, label=label, s=80)
for label, color in colors.items()
]
ax.legend(
handles=legend_elements,
loc="upper right",
frameon=True,
facecolor="white",
edgecolor="none",
fontsize=9,
)
# Set title
ax.set_title(
f"AI Language Model Performance vs. Cost - {category_name}", fontsize=12, pad=15
)
# Add performance bands
for y1, y2, color in zip([85, 75, 60], [95, 85, 75], performance_colors):
ax.axhspan(y1, y2, alpha=0.2, color=color, zorder=1)
# Customize tick parameters
ax.tick_params(axis="both", which="major", labelsize=9)
ax.tick_params(axis="both", which="minor", labelsize=8)
# Add minor ticks for log scale
ax.xaxis.set_minor_locator(plt.LogLocator(base=10.0, subs=np.arange(2, 10) * 0.1))
# Adjust layout
plt.tight_layout()
return fig
|