Spaces:
Running
Running
File size: 29,127 Bytes
10ad72f 4a46abc 10ad72f 4a46abc 10ad72f 4a46abc b8ddec2 80c01c6 4a46abc b8ddec2 4a46abc b8ddec2 4a46abc b8ddec2 4a46abc b8ddec2 4a46abc b8ddec2 4a46abc b8ddec2 4a46abc b8ddec2 4a46abc 80c01c6 d79b50f 523927e 4a46abc b8ddec2 4a46abc b8ddec2 4a46abc 523927e 4a46abc 523927e 4a46abc e2809a3 4a46abc b8ddec2 c8ff2be b8ddec2 91da2cc b8ddec2 e2809a3 b8ddec2 ae900da b8ddec2 91da2cc b8ddec2 91da2cc b8ddec2 91da2cc b8ddec2 91da2cc b8ddec2 91da2cc b8ddec2 91da2cc b8ddec2 91da2cc b8ddec2 91da2cc b8ddec2 91da2cc b8ddec2 ae900da b8ddec2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 |
import pandas as pd
from glob import glob
import numpy as np
from pathlib import Path
DATASETS = [Path(file).stem for file in glob("datasets/*.parquet")]
SCORES = [round(x, 2) for x in np.arange(0, 1.1, 0.1).tolist()]
def load_data():
"""Load and preprocess the data."""
df = pd.read_csv("results.csv").dropna()
# Add combined I/O cost column with 3:1 ratio
df["IO Cost"] = (
df["Input cost per million token"] * 0.75
+ df["Output cost per million token"] * 0.25
)
return df
# categories.py
CATEGORIES = {
"Overall": ["Model Avg"],
"Overall single turn": ["single turn perf"],
"Overall multi turn": ["multi turn perf"],
"Single func call": [
"xlam_single_tool_single_call",
"xlam_multiple_tool_single_call",
],
"Multiple func call": [
"xlam_multiple_tool_multiple_call",
"xlam_single_tool_multiple_call",
"BFCL_v3_multi_turn_base_multi_func_call",
],
"Irrelevant query": ["BFCL_v3_irrelevance"],
"Long context": ["tau_long_context", "BFCL_v3_multi_turn_long_context"],
"Missing func": ["xlam_tool_miss", "BFCL_v3_multi_turn_miss_func"],
"Missing params": ["BFCL_v3_multi_turn_miss_param"],
"Composite": ["BFCL_v3_multi_turn_composite"],
}
chat_css = """
/* Container styles */
.container {
display: flex;
gap: 1.5rem;
height: calc(100vh - 100px);
padding: 1rem;
}
/* Chat panel styles */
.chat-panel {
flex: 2;
background: #1a1f2c;
border-radius: 1rem;
padding: 1rem;
overflow-y: auto;
max-height: calc(100vh - 120px);
}
/* Message styles */
.message {
padding: 1.2rem;
margin: 0.8rem;
border-radius: 1rem;
font-family: monospace;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
.system {
background: linear-gradient(135deg, #8e44ad, #9b59b6);
}
.user {
background: linear-gradient(135deg, #2c3e50, #3498db);
margin-left: 2rem;
}
.assistant {
background: linear-gradient(135deg, #27ae60, #2ecc71);
margin-right: 2rem;
}
.role-badge {
display: inline-block;
padding: 0.3rem 0.8rem;
border-radius: 0.5rem;
font-weight: bold;
margin-bottom: 0.8rem;
font-size: 0.9rem;
text-transform: uppercase;
letter-spacing: 0.05em;
}
.system-role {
background-color: #8e44ad;
color: white;
}
.user-role {
background-color: #3498db;
color: white;
}
.assistant-role {
background-color: #27ae60;
color: white;
}
.content {
white-space: pre-wrap;
word-break: break-word;
color: #f5f6fa;
line-height: 1.5;
}
/* Metrics panel styles */
.metrics-panel {
flex: 1;
display: flex;
flex-direction: column;
gap: 2rem;
padding: 1.5rem;
background: #1a1f2c;
border-radius: 1rem;
}
.metric-section {
background: #1E293B;
padding: 1.5rem;
border-radius: 1rem;
}
.score-section {
text-align: center;
}
.score-display {
font-size: 3rem;
font-weight: bold;
color: #4ADE80;
line-height: 1;
margin: 0.5rem 0;
}
.explanation-text {
color: #E2E8F0;
line-height: 1.6;
font-size: 0.95rem;
}
/* Tool info panel styles */
.tool-info-panel {
background: #1a1f2c;
padding: 1.5rem;
border-radius: 1rem;
color: #f5f6fa;
}
.tool-section {
margin-bottom: 1.5rem;
}
.tool-name {
font-size: 1.2rem;
color: #4ADE80;
font-weight: bold;
margin-bottom: 0.5rem;
}
.tool-description {
color: #E2E8F0;
line-height: 1.6;
margin-bottom: 1rem;
}
.tool-parameters .parameter {
margin: 0.5rem 0;
padding: 0.5rem;
background: rgba(255, 255, 255, 0.05);
border-radius: 0.5rem;
}
.param-name {
color: #63B3ED;
font-weight: bold;
margin-right: 0.5rem;
}
.tool-examples .example {
margin: 0.5rem 0;
padding: 0.5rem;
background: rgba(255, 255, 255, 0.05);
border-radius: 0.5rem;
font-family: monospace;
}
/* Custom scrollbar */
::-webkit-scrollbar {
width: 8px;
}
::-webkit-scrollbar-track {
background: rgba(255, 255, 255, 0.1);
border-radius: 4px;
}
::-webkit-scrollbar-thumb {
background: linear-gradient(45deg, #3498db, #2ecc71);
border-radius: 4px;
}
/* Title styles */
.title {
color: #63B3ED;
font-size: 2rem;
font-weight: bold;
text-align: center;
margin-bottom: 1.5rem;
padding: 1rem;
}
/* Headers */
h3 {
color: #63B3ED;
margin: 0 0 1rem 0;
font-size: 1.1rem;
font-weight: 500;
letter-spacing: 0.05em;
}
"""
COMMON = """
<style>
@media (prefers-color-scheme: dark) {
:root {
--bg-primary: #0B0B19;
--bg-secondary: rgba(19, 19, 37, 0.4);
--bg-hover: rgba(30, 30, 45, 0.95);
--text-primary: #ffffff;
--text-secondary: #e2e8f0;
--text-tertiary: #e2e8f0;
--border-color: rgba(31, 41, 55, 0.5);
--border-hover: rgba(79, 70, 229, 0.4);
--card-bg: rgba(17, 17, 27, 0.4);
--accent-color: #ffffff;
--accent-bg: rgba(79, 70, 229, 0.1);
--blue-gradient: linear-gradient(45deg, #60A5FA, #3B82F6);
--purple-gradient: linear-gradient(45deg, #A78BFA, #8B5CF6);
--pink-gradient: linear-gradient(45deg, #F472B6, #EC4899);
--shadow-color: rgba(0, 0, 0, 0.2);
}
}
@media (prefers-color-scheme: light) {
:root {
--bg-primary: #ffffff;
--bg-secondary: rgba(243, 244, 246, 0.4);
--bg-hover: rgba(229, 231, 235, 0.95);
--text-primary: #1F2937;
--text-secondary: #4B5563;
--text-tertiary: #6B7280;
--border-color: rgba(209, 213, 219, 0.5);
--border-hover: rgba(79, 70, 229, 0.4);
--card-bg: rgba(249, 250, 251, 0.4);
--accent-color: #4F46E5;
--accent-bg: rgba(79, 70, 229, 0.1);
--blue-gradient: linear-gradient(45deg, #3B82F6, #2563EB);
--purple-gradient: linear-gradient(45deg, #8B5CF6, #EF43CD);
--pink-gradient: linear-gradient(45deg, #EC4899, #DB2777);
--shadow-color: rgba(0, 0, 0, 0.1);
}
}
</style>
"""
DESCRIPTION_HTML = """
<div style="
background: var(--bg-secondary, rgba(30, 30, 45, 0.95));
border-radius: 12px;
padding: 24px;
margin: 16px 0;
">
<div style="
display: flex;
flex-direction: column;
gap: 16px;
">
<div style="
color: var(--text-primary);
font-size: 1.1rem;
font-weight: 500;
display: flex;
align-items: center;
gap: 8px;
">
π― Purpose
<span style="
background: linear-gradient(to right, var(--accent-blue), var(--accent-purple));
color: white;
padding: 4px 12px;
border-radius: 100px;
font-size: 0.9rem;
">Latest Update: Feb 2025</span>
</div>
<p style="
color: var(--text-secondary);
margin: 0;
line-height: 1.6;
">
This comprehensive benchmark evaluates language models' ability to effectively utilize tools and functions in complex scenarios.
</p>
<div style="
color: var(--text-primary);
font-size: 1.1rem;
font-weight: 500;
margin-top: 8px;
">
π What We Evaluate
</div>
<div style="
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 16px;
color: var(--text-secondary);
">
<div style="display: flex; gap: 8px; align-items: center;">
π Single/Multi-turn Interactions
</div>
<div style="display: flex; gap: 8px; align-items: center;">
𧩠Function Composition
</div>
<div style="display: flex; gap: 8px; align-items: center;">
β‘ Error Handling
</div>
</div>
<div style="
color: var(--text-primary);
font-size: 1.1rem;
font-weight: 500;
margin-top: 8px;
">
π Key Results
</div>
<div style="
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 16px;
color: var(--text-secondary);
">
<div style="display: flex; gap: 8px; align-items: center;">
β
Tool Selection Quality
</div>
<div style="display: flex; gap: 8px; align-items: center;">
π° Open Vs Closed Source
</div>
<div style="display: flex; gap: 8px; align-items: center;">
βοΈ Overall Effectiveness
</div>
</div>
</div>
</div>
"""
HEADER_CONTENT = (
COMMON
+ """
<style>
.header-wrapper {
background: var(--bg-primary);
padding: 4rem 2rem;
border-radius: 16px;
margin-bottom: 0;
transition: all 0.3s ease;
}
.header-content {
max-width: 72rem;
margin: 0 auto;
}
.title-section {
text-align: center;
margin-bottom: 4rem;
}
.title-gradient {
font-size: 5rem;
font-weight: 800;
line-height: 1.1;
background: var(--purple-gradient);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 0.5rem;
}
.subtitle-white {
font-size: 5rem;
font-weight: 800;
line-height: 1.1;
color: var(--text-primary);
margin-bottom: 3rem;
transition: color 0.3s ease;
}
.description {
color: var(--text-secondary);
font-size: 1.25rem;
line-height: 1.75;
max-width: 800px;
margin: 0 auto;
text-align: center;
transition: color 0.3s ease;
}
.highlight-question {
background: var(--blue-gradient);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
display: block;
margin-top: 1rem;
font-size: 1.5rem;
font-weight: 500;
}
.metrics-grid {
display: grid;
grid-template-columns: repeat(3, 1fr);
gap: 1.5rem;
margin-top: 4rem;
}
.metric-card {
background: var(--bg-secondary);
border: 1px solid var(--border-color);
border-radius: 1rem;
padding: 2rem;
transition: all 0.3s ease;
align-items: center;
}
.metric-card:hover {
transform: translateY(-5px);
border-color: var(--border-hover);
box-shadow: 0 4px 20px var(--shadow-color);
}
.metric-number {
font-size: 4rem;
font-weight: 800;
margin-bottom: 1rem;
}
.metric-blue {
background: var(--blue-gradient);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.metric-purple {
background: var(--purple-gradient);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.metric-pink {
background: var(--pink-gradient);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.metric-label {
color: var(--text-secondary);
font-size: 1.5rem;
margin-bottom: 1.5rem;
transition: color 0.3s ease;
}
.metric-detail {
font-size: 1.125rem;
line-height: 1.75;
margin-top: 0.5rem;
transition: color 0.3s ease;
}
.metric-detail.primary {
color: var(--accent-color);
}
.metric-detail.secondary {
color: var(--text-secondary);
}
.actions {
display: flex;
gap: 1rem;
justify-content: center;
margin-top: 3rem;
}
.action-button {
display: flex;
align-items: center;
gap: 0.5rem;
padding: 0.75rem 1.5rem;
background: var(--bg-secondary);
border: 1px solid var(--border-color);
border-radius: 100px;
color: var(--text-primary) !important;
text-decoration: none !important;
font-size: 0.95rem;
transition: all 0.3s ease;
}
.action-button:hover {
transform: translateY(-2px);
border-color: var(--accent-color);
background: var(--accent-bg);
}
@media (max-width: 768px) {
.title-gradient, .subtitle-white {
font-size: 3rem;
}
.metrics-grid {
grid-template-columns: 1fr;
}
}
</style>
<div class="header-wrapper">
<div class="header-content">
<div class="title-section">
<div class="subtitle-white">Welcome to the</div>
<div class="title-gradient">Agent Leaderboard!</div>
<div class="description">
The landscape of AI agents is evolving rapidly, with major tech CEOs predicting 2025 as a pivotal year.
We built this leaderboard to answer one simple question:
<div class="highlight-question">
"How do AI agents perform in real-world agentic scenarios?"
</div>
</div>
</div>
<div class="actions">
<a href="#" class="action-button">
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
<path d="M15 7h3a5 5 0 0 1 5 5 5 5 0 0 1-5 5h-3m-6 0H6a5 5 0 0 1-5-5 5 5 0 0 1 5-5h3"/>
<line x1="8" y1="12" x2="16" y2="12"/>
</svg>
Blog
</a>
<a href="#" class="action-button">
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
<path d="M9 19c-5 1.5-5-2.5-7-3m14 6v-3.87a3.37 3.37 0 0 0-.94-2.61c3.14-.35 6.44-1.54 6.44-7A5.44 5.44 0 0 0 20 4.77 5.07 5.07 0 0 0 19.91 1S18.73.65 16 2.48a13.38 13.38 0 0 0-7 0C6.27.65 5.09 1 5.09 1A5.07 5.07 0 0 0 5 4.77a5.44 5.44 0 0 0-1.5 3.78c0 5.42 3.3 6.61 6.44 7A3.37 3.37 0 0 0 9 18.13V22"/>
</svg>
GitHub
</a>
<a href="#" class="action-button">
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
<path d="M21 15v4a2 2 0 0 1-2 2H5a2 2 0 0 1-2-2v-4"/>
<polyline points="7 10 12 15 17 10"/>
<line x1="12" y1="15" x2="12" y2="3"/>
</svg>
Dataset
</a>
</div>
</div>
</div>
"""
)
CARDS = """ <div class="metrics-grid">
<div class="metric-card">
<div class="metric-number metric-blue">17</div>
<div class="metric-label">Total Models</div>
<div class="metric-detail primary">12 Private</div>
<div class="metric-detail primary">5 Open Source</div>
</div>
<div class="metric-card">
<div class="metric-number metric-purple">14</div>
<div class="metric-label">Evaluation Datasets</div>
<div class="metric-detail primary">Cross-Domain Testing</div>
<div class="metric-detail primary">Real-world use cases</div>
</div>
<div class="metric-card">
<div class="metric-number metric-pink">TSQ</div>
<div class="metric-label">Evaluation Metric</div>
<div class="metric-detail primary">Tool Selection Quality</div>
<div class="metric-detail primary">GPT-4o Based Judge</div>
</div>
</div>"""
METHODOLOGY = """
<style>
@media (prefers-color-scheme: dark) {
:root {
--bg-primary: #0B0B19;
--bg-secondary: rgba(19, 19, 37, 0.4);
--bg-tertiary: rgba(30, 30, 45, 0.95);
--text-primary: #ffffff;
--text-secondary: #94A3B8;
--text-tertiary: #E2E8F0;
--border-primary: rgba(31, 41, 55, 0.5);
--border-hover: rgba(79, 70, 229, 0.4);
--accent-blue: #60A5FA;
--accent-purple: #A78BFA;
--accent-pink: #F472B6;
--card-hover-bg: rgba(79, 70, 229, 0.1);
--shadow-color: rgba(79, 70, 229, 0.1);
}
}
@media (prefers-color-scheme: light) {
:root {
--bg-primary: #ffffff;
--bg-secondary: rgba(243, 244, 246, 0.4);
--bg-tertiary: rgba(249, 250, 251, 0.95);
--text-primary: #111827;
--text-secondary: #4B5563;
--text-tertiary: #6B7280;
--border-primary: rgba(209, 213, 219, 0.5);
--border-hover: rgba(79, 70, 229, 0.4);
--accent-blue: #3B82F6;
--accent-purple: #8B5CF6;
--accent-pink: #EC4899;
--card-hover-bg: rgba(243, 244, 246, 0.8);
--shadow-color: rgba(0, 0, 0, 0.1);
}
}
/* [Previous CSS remains the same until features-grid] */
/* Features Grid Section */
.features-grid {
display: grid;
grid-template-columns: repeat(3, 1fr);
gap: 1.5rem;
width: 100%;
padding: 2rem 0;
}
.dataset-table {
width: 100%;
border-collapse: separate;
border-spacing: 0;
margin: 2rem 0;
background: var(--bg-tertiary);
border-radius: 1rem;
overflow: hidden;
box-shadow: 0 4px 20px var(--shadow-color);
}
.dataset-table thead {
background: linear-gradient(90deg, var(--accent-blue), var(--accent-purple));
}
.dataset-table th {
padding: 1.25rem 1rem;
text-align: left;
color: white;
font-weight: 600;
font-size: 1rem;
}
.dataset-table td {
padding: 1rem;
border-bottom: 1px solid var(--border-primary);
color: var(--text-secondary);
transition: all 0.2s ease;
}
.dataset-table tbody tr:hover td {
background: var(--card-hover-bg);
color: var(--text-primary);
}
.dataset-table td[rowspan] {
background: var(--bg-secondary);
color: var(--accent-blue);
font-weight: 600;
border-right: 1px solid var(--border-primary);
}
.purpose-cell {
max-width: 300px;
line-height: 1.5;
}
.category-cell {
color: var(--accent-purple);
font-weight: 500;
}
.dataset-name {
font-family: monospace;
color: var(--accent-pink);
font-size: 0.9rem;
}
[Rest of the CSS remains the same]
</style>
<!-- Methodology Section -->
<div class="methodology-section">
<h1 class="methodology-title">Methodology</h1>
<h2 class="methodology-subtitle">Overview</h2>
<p class="methodology-text">
We evaluate language models' ability to effectively use tools
in single and multi-turn conversations. Our evaluation focuses on both basic functionality and edge
cases that challenge real-world applicability.
</p>
<style>
.key-insights thead tr {
background: linear-gradient(90deg, #60A5FA, #818CF8);
}
.key-insights td:first-child {
color: var(--accent-blue);
background: var(--bg-primary);
}
.key-insights td:last-child {
background: var(--bg-primary);
}
.key-insights td {
padding: 1rem;
border-bottom: 1px solid rgba(31, 41, 55, 0.5);
}
</style>
<div class="methodology-section">
<h1 class="methodology-subtitle">Key Insights</h1>
<div class="table-container">
<table class="dataset-table key-insights">
<thead>
<tr>
<th>Category</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Champion</td>
<td>Gemini-2.0-flash dominates with 0.935 score at just $0.075 per million tokens, excelling in both complex tasks (0.95) and safety features (0.98)</td>
</tr>
<tr>
<td>Price-Performance Paradox</td>
<td>Top 3 models span 20x price difference yet only 3% performance gap, challenging pricing assumptions</td>
</tr>
<tr>
<td>Open Vs Closed Source</td>
<td>The new Mistral-small leads in open source models and performs similar to GPT-4o-mini at 0.83, signaling OSS maturity in tool calling</td>
</tr>
<tr>
<td>Reasoning Models</td>
<td>Although being great for reasoning, o1 and o3-mini are far from perfect scoring 0.87 and 0.84 respectively. DeepSeek V3 and R1 were excluded from rankings due to limited function support</td>
</tr>
<tr>
<td>Tool Miss Detection</td>
<td>Dataset averages of 0.59 and 0.78 reveal fundamental challenges in handling edge cases and maintaining context, even as models excel at basic tasks</td>
</tr>
<tr>
<td>Architecture Trade-offs</td>
<td>Long context vs parallel execution shows architectural limits: O1 leads context (0.98) but fails parallel tasks (0.43), while GPT-4o shows opposite pattern</td>
</tr>
</tbody>
</table>
</div>
<h2 class="methodology-subtitle">Development Implications</h2>
<div class="table-container">
<table class="dataset-table key-insights">
<thead>
<tr>
<th>Area</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Complexity</td>
<td>Simple tasks work with most models. Complex workflows requiring multiple tools need models with 0.85+ scores in composite tests</td>
</tr>
<tr>
<td>Error Handling</td>
<td>Models with low tool selection scores need guardrails. Add validation layers and structured error recovery, especially for parameter collection</td>
</tr>
<tr>
<td>Context Management</td>
<td>Long conversations require either models strong in context retention or external context storage systems</td>
</tr>
<tr>
<td>Reasoning Models</td>
<td>While o1 and o3-mini excelled in function calling, DeepSeek V3 and R1 were excluded from rankings due to limited function support</td>
</tr>
<tr>
<td>Safety Controls</td>
<td>Add strict tool access controls for models weak in irrelevance detection. Include validation layers for inconsistent performers</td>
</tr>
<tr>
<td>Open Vs Closed Source</td>
<td>Private models lead in complex tasks, but open-source options work well for basic operations. Choose based on your scaling needs</td>
</tr>
</tbody>
</table>
</div>
<h2 class="methodology-subtitle">Dataset Structure</h2>
<div class="table-container">
<table class="dataset-table">
<thead>
<tr>
<th>Type</th>
<th>Samples</th>
<th>Category</th>
<th>Dataset Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="4">Single-Turn</td>
<td>100 + 100</td>
<td class="category-cell">Single Function Call</td>
<td class="dataset-name">xlam_single_tool_single_call</td>
<td class="purpose-cell">Evaluates basic ability to read documentation and make single function calls</td>
</tr>
<tr>
<td>200 + 50</td>
<td class="category-cell">Multiple Function Call</td>
<td class="dataset-name">xlam_multiple_tool_multiple_call, xlam_single_tool_multiple_call</td>
<td class="purpose-cell">Tests parallel execution and result aggregation capabilities</td>
</tr>
<tr>
<td>100</td>
<td class="category-cell">Irrelevant Query</td>
<td class="dataset-name">BFCL_v3_irrelevance</td>
<td class="purpose-cell">Tests ability to recognize when available tools don't match user needs</td>
</tr>
<tr>
<td>100</td>
<td class="category-cell">Long Context</td>
<td class="dataset-name">tau_long_context</td>
<td class="purpose-cell">Assesses handling of extended interactions and complex instructions</td>
</tr>
<tr>
<td rowspan="5">Multi-Turn</td>
<td>50 + 30</td>
<td class="category-cell">Single Function Call</td>
<td class="dataset-name">BFCL_v3_multi_turn_base_single_func_call, toolscs_single_func_call</td>
<td class="purpose-cell">Tests basic conversational function calling abilities</td>
</tr>
<tr>
<td>50</td>
<td class="category-cell">Multiple Function Call</td>
<td class="dataset-name">BFCL_v3_multi_turn_base_multi_func_call</td>
<td class="purpose-cell">Evaluates handling of multiple function calls in conversation</td>
</tr>
<tr>
<td>100</td>
<td class="category-cell">Missing Function</td>
<td class="dataset-name">BFCL_v3_multi_turn_miss_func</td>
<td class="purpose-cell">Tests graceful handling of unavailable tools</td>
</tr>
<tr>
<td>100</td>
<td class="category-cell">Missing Parameters</td>
<td class="dataset-name">BFCL_v3_multi_turn_miss_param</td>
<td class="purpose-cell">Assesses parameter collection and handling incomplete information</td>
</tr>
<tr>
<td>100</td>
<td class="category-cell">Composite</td>
<td class="dataset-name">BFCL_v3_multi_turn_composite</td>
<td class="purpose-cell">Tests overall robustness in complex scenarios</td>
</tr>
</tbody>
</table>
</div>
<!-- Features Grid Section -->
<div class="features-grid">
<div class="feature-card">
<div class="feature-icon">
<svg width="24" height="24" fill="none" stroke="var(--accent-blue)" stroke-width="2" viewBox="0 0 24 24">
<path d="M22 12h-4l-3 9L9 3l-3 9H2"/>
</svg>
</div>
<h3 class="feature-title">Make Better Decisions</h3>
<ul class="feature-list">
<li>Cost-effectiveness analysis</li>
<li>Business impact metrics</li>
<li>Vendor strategy insights</li>
</ul>
</div>
<div class="feature-card">
<div class="feature-icon">
<svg width="24" height="24" fill="none" stroke="var(--accent-purple)" stroke-width="2" viewBox="0 0 24 24">
<path d="M21 16V8a2 2 0 0 0-1-1.73l-7-4a2 2 0 0 0-2 0l-7 4A2 2 0 0 0 3 8v8a2 2 0 0 0 1 1.73l7 4a2 2 0 0 0 2 0l7-4A2 2 0 0 0 21 16z"/>
</svg>
</div>
<h3 class="feature-title">360Β° Domain Evaluation</h3>
<ul class="feature-list">
<li>Cross-domain evaluation</li>
<li>Real-world use cases</li>
<li>Edge case evaluation</li>
</ul>
</div>
<div class="feature-card">
<div class="feature-icon">
<svg width="24" height="24" fill="none" stroke="var(--accent-pink)" stroke-width="2" viewBox="0 0 24 24">
<path d="M21 2v6h-6M3 12a9 9 0 0 1 15-6.7L21 8M3 12a9 9 0 0 0 15 6.7L21 16M21 22v-6h-6"/>
</svg>
</div>
<h3 class="feature-title">Updated Periodically</h3>
<ul class="feature-list">
<li>12 private models evaluated</li>
<li>5 open source models included</li>
<li>Monthly model additions</li>
</ul>
</div>
"""
|