Spaces:
Running
Running
File size: 5,927 Bytes
4a46abc 4c5e550 4a46abc 4c5e550 4a46abc 4c5e550 4a46abc 4c5e550 4a46abc 4c5e550 4a46abc 4c5e550 4a46abc 4c5e550 4a46abc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# chat.py
import gradio as gr
import json
import pandas as pd
import numpy as np
from functools import lru_cache
import promptquality as pq
project_name = "agent-lb-v1"
PROJECT_ID = pq.get_project_from_name(project_name).id
@lru_cache(maxsize=1000)
def get_model_score_for_dataset(model, dataset):
print(f"Getting metrics for {model} {project_name} for dataset {dataset}")
run_name = f"{model} {dataset}"
run_id = pq.get_run_from_name(run_name, PROJECT_ID).id
rows = pq.get_rows(
project_id=PROJECT_ID,
run_id=run_id,
task_type=None,
config=None,
starting_token=0,
limit=1000,
)
rationales = [d.metrics.tool_selection_quality_rationale for d in rows]
scores = [
round(d.metrics.tool_selection_quality, 2)
for d, rationale in zip(rows, rationales)
if rationale
]
explanations = [
d.metrics.tool_selection_quality_explanation
for d, rationale in zip(rows, rationales)
if rationale
]
rationales = [r for r in rationales if r]
mean_score = round(np.mean(scores), 2)
return {
"mean_score": mean_score,
"scores": scores,
"rationales": rationales,
"explanations": explanations,
}
def get_updated_df(df, data):
df["rationale"] = data["rationales"]
df["explanation"] = data["explanations"]
df["score"] = data["scores"]
return df
def get_chat_and_score_df(model, dataset):
data = get_model_score_for_dataset(model, dataset)
df = pd.read_parquet(f"datasets/{dataset}.parquet")
df = get_updated_df(df, data)
return df
def format_chat_message(role, content):
"""Format individual chat messages with proper styling."""
role_style = role.lower()
return f"""
<div class="message {role_style}">
<div class="role-badge {role_style}-role">{role}</div>
<div class="content">{content}</div>
</div>
"""
def format_tool_info(tools):
"""Format tool information with proper styling."""
if isinstance(tools, str):
try:
tools = json.loads(tools)
except:
return "<div>No tool information available</div>"
if not tools:
return "<div>No tool information available</div>"
tool_html = ""
for tool in tools:
tool_html += f"""
<div class="tool-section">
<div class="tool-name">{tool.get('name', 'Unnamed Tool')}</div>
<div class="tool-description">{tool.get('description', 'No description available')}</div>
<div class="tool-parameters">
{format_parameters(tool.get('parameters', {}))}
</div>
</div>
"""
return f'<div class="tool-info-panel">{tool_html}</div>'
def format_parameters(parameters):
if not parameters:
return "<div>No parameters</div>"
params_html = ""
for name, desc in parameters.items():
params_html += f"""
<div class="parameter">
<span class="param-name">{name}:</span> {desc}
</div>
"""
return params_html
def format_metrics(score, rationale, explanation):
"""Format metrics display with proper styling."""
return f"""
<div class="metrics-panel">
<div class="metric-section">
<h3>Score</h3>
<div class="score-display">{score:.2f}</div>
</div>
<div class="metric-section">
<h3>Rationale</h3>
<div class="explanation-text">{rationale}</div>
</div>
<div class="metric-section">
<h3>Explanation</h3>
<div class="explanation-text">{explanation}</div>
</div>
</div>
"""
def update_chat_display(df, index):
"""Update the chat visualization for a specific index."""
if df is None or df.empty or index >= len(df):
return (
"<div>No data available</div>",
"<div>No metrics available</div>",
"<div>No tool information available</div>",
)
row = df.iloc[index]
# Format chat messages
messages = json.loads(row["conversation"])
chat_html = f"""
<div class="chat-panel">
{"".join([format_chat_message(msg["role"], msg["content"])
for msg in messages])}
</div>
"""
# Format metrics
metrics_html = format_metrics(row["score"], row["rationale"], row["explanation"])
# Format tool info
tool_html = format_tool_info(row["tools_langchain"])
return chat_html, metrics_html, tool_html
def filter_and_update_display(model, dataset, selected_scores, current_index):
try:
# Get data and filter by scores
df_chat = get_chat_and_score_df(model, dataset)
if selected_scores:
df_chat = df_chat[df_chat["score"].isin(selected_scores)]
if df_chat.empty:
return (
"<div>No data available for selected filters</div>",
"<div>No metrics available</div>",
"<div>No tool information available</div>",
gr.update(maximum=0, value=0),
"0/0",
)
# Update index bounds
max_index = len(df_chat) - 1
current_index = min(current_index, max_index)
# Get displays for current index
chat_html, metrics_html, tool_html = update_chat_display(df_chat, current_index)
return (
chat_html,
metrics_html,
tool_html,
gr.update(maximum=max_index, value=current_index),
f"{current_index + 1}/{len(df_chat)}",
)
except Exception as e:
print(f"Error in filter_and_update_display: {str(e)}")
return (
f"<div>Error: {str(e)}</div>",
"<div>No metrics available</div>",
"<div>No tool information available</div>",
gr.update(maximum=0, value=0),
"0/0",
)
|