import os from typing import Union import cv2 import numpy as np import torch from diffusers.image_processor import VaeImageProcessor from PIL import Image from SCHP import SCHP # type: ignore from leffa_utils.densepose_for_mask import DensePose # type: ignore DENSE_INDEX_MAP = { "background": [0], "torso": [1, 2], "right hand": [3], "left hand": [4], "right foot": [5], "left foot": [6], "right thigh": [7, 9], "left thigh": [8, 10], "right leg": [11, 13], "left leg": [12, 14], "left big arm": [15, 17], "right big arm": [16, 18], "left forearm": [19, 21], "right forearm": [20, 22], "face": [23, 24], "thighs": [7, 8, 9, 10], "legs": [11, 12, 13, 14], "hands": [3, 4], "feet": [5, 6], "big arms": [15, 16, 17, 18], "forearms": [19, 20, 21, 22], } ATR_MAPPING = { "Background": 0, "Hat": 1, "Hair": 2, "Sunglasses": 3, "Upper-clothes": 4, "Skirt": 5, "Pants": 6, "Dress": 7, "Belt": 8, "Left-shoe": 9, "Right-shoe": 10, "Face": 11, "Left-leg": 12, "Right-leg": 13, "Left-arm": 14, "Right-arm": 15, "Bag": 16, "Scarf": 17, } LIP_MAPPING = { "Background": 0, "Hat": 1, "Hair": 2, "Glove": 3, "Sunglasses": 4, "Upper-clothes": 5, "Dress": 6, "Coat": 7, "Socks": 8, "Pants": 9, "Jumpsuits": 10, "Scarf": 11, "Skirt": 12, "Face": 13, "Left-arm": 14, "Right-arm": 15, "Left-leg": 16, "Right-leg": 17, "Left-shoe": 18, "Right-shoe": 19, } PROTECT_BODY_PARTS = { "upper": ["Left-leg", "Right-leg"], "lower": ["Right-arm", "Left-arm", "Face"], "overall": [], "inner": ["Left-leg", "Right-leg"], "outer": ["Left-leg", "Right-leg"], } PROTECT_CLOTH_PARTS = { "upper": {"ATR": ["Skirt", "Pants"], "LIP": ["Skirt", "Pants"]}, "lower": {"ATR": ["Upper-clothes"], "LIP": ["Upper-clothes", "Coat"]}, "overall": {"ATR": [], "LIP": []}, "inner": { "ATR": ["Dress", "Coat", "Skirt", "Pants"], "LIP": ["Dress", "Coat", "Skirt", "Pants", "Jumpsuits"], }, "outer": { "ATR": ["Dress", "Pants", "Skirt"], "LIP": ["Upper-clothes", "Dress", "Pants", "Skirt", "Jumpsuits"], }, } MASK_CLOTH_PARTS = { "upper": ["Upper-clothes", "Coat", "Dress", "Jumpsuits"], "lower": ["Pants", "Skirt", "Dress", "Jumpsuits"], "overall": ["Upper-clothes", "Dress", "Pants", "Skirt", "Coat", "Jumpsuits"], "inner": ["Upper-clothes"], "outer": [ "Coat", ], } MASK_DENSE_PARTS = { "upper": ["torso", "big arms", "forearms"], "lower": ["thighs", "legs"], "overall": ["torso", "thighs", "legs", "big arms", "forearms"], "inner": ["torso"], "outer": ["torso", "big arms", "forearms"], } schp_public_protect_parts = [ "Hat", "Hair", "Sunglasses", "Left-shoe", "Right-shoe", "Bag", "Glove", "Scarf", ] schp_protect_parts = { "upper": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits"], "lower": ["Left-arm", "Right-arm", "Upper-clothes", "Coat"], "overall": [], "inner": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits", "Coat"], "outer": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits", "Upper-clothes"], } schp_mask_parts = { "upper": ["Upper-clothes", "Dress", "Coat", "Jumpsuits"], "lower": ["Pants", "Skirt", "Dress", "Jumpsuits", "socks"], "overall": [ "Upper-clothes", "Dress", "Pants", "Skirt", "Coat", "Jumpsuits", "socks", ], "inner": ["Upper-clothes"], "outer": [ "Coat", ], } dense_mask_parts = { "upper": ["torso", "big arms", "forearms"], "lower": ["thighs", "legs"], "overall": ["torso", "thighs", "legs", "big arms", "forearms"], "inner": ["torso"], "outer": ["torso", "big arms", "forearms"], } def vis_mask(image, mask): image = np.array(image).astype(np.uint8) mask = np.array(mask).astype(np.uint8) mask[mask > 127] = 255 mask[mask <= 127] = 0 mask = np.expand_dims(mask, axis=-1) mask = np.repeat(mask, 3, axis=-1) mask = mask / 255 return Image.fromarray((image * (1 - mask)).astype(np.uint8)) def part_mask_of(part: Union[str, list], parse: np.ndarray, mapping: dict): if isinstance(part, str): part = [part] mask = np.zeros_like(parse) for _ in part: if _ not in mapping: continue if isinstance(mapping[_], list): for i in mapping[_]: mask += parse == i else: mask += parse == mapping[_] return mask def hull_mask(mask_area: np.ndarray): ret, binary = cv2.threshold(mask_area, 127, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours( binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) hull_mask = np.zeros_like(mask_area) for c in contours: hull = cv2.convexHull(c) hull_mask = cv2.fillPoly(np.zeros_like(mask_area), [hull], 255) | hull_mask return hull_mask class AutoMasker: def __init__( self, densepose_path: str = "./ckpts/densepose", schp_path: str = "./ckpts/schp", device="cuda", ): np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed(0) self.densepose_processor = DensePose(densepose_path, device) self.schp_processor_atr = SCHP( ckpt_path=os.path.join(schp_path, "exp-schp-201908301523-atr.pth"), device=device, ) self.schp_processor_lip = SCHP( ckpt_path=os.path.join(schp_path, "exp-schp-201908261155-lip.pth"), device=device, ) self.mask_processor = VaeImageProcessor( vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True, ) def process_densepose(self, image_or_path): return self.densepose_processor(image_or_path, resize=1024) def process_schp_lip(self, image_or_path): return self.schp_processor_lip(image_or_path) def process_schp_atr(self, image_or_path): return self.schp_processor_atr(image_or_path) def preprocess_image(self, image_or_path): return { "densepose": self.densepose_processor(image_or_path, resize=1024), "schp_atr": self.schp_processor_atr(image_or_path), "schp_lip": self.schp_processor_lip(image_or_path), } @staticmethod def cloth_agnostic_mask( densepose_mask: Image.Image, schp_lip_mask: Image.Image, schp_atr_mask: Image.Image, part: str = "overall", **kwargs, ): assert part in [ "upper", "lower", "overall", "inner", "outer", ], f"part should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {part}" w, h = densepose_mask.size dilate_kernel = max(w, h) // 250 dilate_kernel = dilate_kernel if dilate_kernel % 2 == 1 else dilate_kernel + 1 dilate_kernel = np.ones((dilate_kernel, dilate_kernel), np.uint8) kernal_size = max(w, h) // 25 kernal_size = kernal_size if kernal_size % 2 == 1 else kernal_size + 1 densepose_mask = np.array(densepose_mask) schp_lip_mask = np.array(schp_lip_mask) schp_atr_mask = np.array(schp_atr_mask) # Strong Protect Area (Hands, Face, Accessory, Feet) hands_protect_area = part_mask_of( ["hands", "feet"], densepose_mask, DENSE_INDEX_MAP ) hands_protect_area = cv2.dilate(hands_protect_area, dilate_kernel, iterations=1) hands_protect_area = hands_protect_area & ( part_mask_of( ["Left-arm", "Right-arm", "Left-leg", "Right-leg"], schp_atr_mask, ATR_MAPPING, ) | part_mask_of( ["Left-arm", "Right-arm", "Left-leg", "Right-leg"], schp_lip_mask, LIP_MAPPING, ) ) face_protect_area = part_mask_of("Face", schp_lip_mask, LIP_MAPPING) strong_protect_area = hands_protect_area | face_protect_area # Weak Protect Area (Hair, Irrelevant Clothes, Body Parts) body_protect_area = part_mask_of( PROTECT_BODY_PARTS[part], schp_lip_mask, LIP_MAPPING ) | part_mask_of(PROTECT_BODY_PARTS[part], schp_atr_mask, ATR_MAPPING) hair_protect_area = part_mask_of( ["Hair"], schp_lip_mask, LIP_MAPPING ) | part_mask_of(["Hair"], schp_atr_mask, ATR_MAPPING) cloth_protect_area = part_mask_of( PROTECT_CLOTH_PARTS[part]["LIP"], schp_lip_mask, LIP_MAPPING ) | part_mask_of(PROTECT_CLOTH_PARTS[part]["ATR"], schp_atr_mask, ATR_MAPPING) accessory_protect_area = part_mask_of( ( accessory_parts := [ "Hat", "Glove", "Sunglasses", "Bag", "Left-shoe", "Right-shoe", "Scarf", "Socks", ] ), schp_lip_mask, LIP_MAPPING, ) | part_mask_of(accessory_parts, schp_atr_mask, ATR_MAPPING) weak_protect_area = ( body_protect_area | cloth_protect_area | hair_protect_area | strong_protect_area | accessory_protect_area ) # Mask Area strong_mask_area = part_mask_of( MASK_CLOTH_PARTS[part], schp_lip_mask, LIP_MAPPING ) | part_mask_of(MASK_CLOTH_PARTS[part], schp_atr_mask, ATR_MAPPING) background_area = part_mask_of( ["Background"], schp_lip_mask, LIP_MAPPING ) & part_mask_of(["Background"], schp_atr_mask, ATR_MAPPING) mask_dense_area = part_mask_of( MASK_DENSE_PARTS[part], densepose_mask, DENSE_INDEX_MAP ) mask_dense_area = cv2.resize( mask_dense_area.astype(np.uint8), None, fx=0.25, fy=0.25, interpolation=cv2.INTER_NEAREST, ) mask_dense_area = cv2.dilate(mask_dense_area, dilate_kernel, iterations=2) mask_dense_area = cv2.resize( mask_dense_area.astype(np.uint8), None, fx=4, fy=4, interpolation=cv2.INTER_NEAREST, ) mask_area = ( np.ones_like(densepose_mask) & (~weak_protect_area) & (~background_area) ) | mask_dense_area mask_area = ( hull_mask(mask_area * 255) // 255 ) # Convex Hull to expand the mask area mask_area = mask_area & (~weak_protect_area) mask_area = cv2.GaussianBlur(mask_area * 255, (kernal_size, kernal_size), 0) mask_area[mask_area < 25] = 0 mask_area[mask_area >= 25] = 1 mask_area = (mask_area | strong_mask_area) & (~strong_protect_area) mask_area = cv2.dilate(mask_area, dilate_kernel, iterations=1) return Image.fromarray(mask_area * 255) def __call__( self, image: Union[str, Image.Image], mask_type: str = "upper", ): assert mask_type in [ "upper", "lower", "overall", "inner", "outer", ], f"mask_type should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {mask_type}" preprocess_results = self.preprocess_image(image) mask = self.cloth_agnostic_mask( preprocess_results["densepose"], preprocess_results["schp_lip"], preprocess_results["schp_atr"], part=mask_type, ) return { "mask": mask, "densepose": preprocess_results["densepose"], "schp_lip": preprocess_results["schp_lip"], "schp_atr": preprocess_results["schp_atr"], } if __name__ == "__main__": import os import sys from PIL import Image automasker = AutoMasker() image_path = sys.argv[1] image = Image.open(image_path).convert("RGB") outputs = automasker( image, "upper", # "lower", ) mask = outputs["mask"] # densepose = outputs["densepose"] # densepose I map, range 0~24 # schp_lip = outputs["schp_lip"] # schp_atr = outputs["schp_atr"] mask.save(".".join(image_path.split(".")[:-1]) + "_mask.jpg")