Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import json
|
4 |
+
import re
|
5 |
+
from gradio_client import Client
|
6 |
+
|
7 |
+
|
8 |
+
def get_caption_from_kosmos(image_in):
|
9 |
+
kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/")
|
10 |
+
|
11 |
+
kosmos2_result = kosmos2_client.predict(
|
12 |
+
image_in, # str (filepath or URL to image) in 'Test Image' Image component
|
13 |
+
"Detailed", # str in 'Description Type' Radio component
|
14 |
+
fn_index=4
|
15 |
+
)
|
16 |
+
|
17 |
+
print(f"KOSMOS2 RETURNS: {kosmos2_result}")
|
18 |
+
|
19 |
+
with open(kosmos2_result[1], 'r') as f:
|
20 |
+
data = json.load(f)
|
21 |
+
|
22 |
+
reconstructed_sentence = []
|
23 |
+
for sublist in data:
|
24 |
+
reconstructed_sentence.append(sublist[0])
|
25 |
+
|
26 |
+
full_sentence = ' '.join(reconstructed_sentence)
|
27 |
+
#print(full_sentence)
|
28 |
+
|
29 |
+
# Find the pattern matching the expected format ("Describe this image in detail:" followed by optional space and then the rest)...
|
30 |
+
pattern = r'^Describe this image in detail:\s*(.*)$'
|
31 |
+
# Apply the regex pattern to extract the description text.
|
32 |
+
match = re.search(pattern, full_sentence)
|
33 |
+
if match:
|
34 |
+
description = match.group(1)
|
35 |
+
print(description)
|
36 |
+
else:
|
37 |
+
print("Unable to locate valid description.")
|
38 |
+
|
39 |
+
# Find the last occurrence of "."
|
40 |
+
#last_period_index = full_sentence.rfind('.')
|
41 |
+
|
42 |
+
# Truncate the string up to the last period
|
43 |
+
#truncated_caption = full_sentence[:last_period_index + 1]
|
44 |
+
|
45 |
+
# print(truncated_caption)
|
46 |
+
#print(f"\nβ\nIMAGE CAPTION: {truncated_caption}")
|
47 |
+
|
48 |
+
return description
|
49 |
+
|
50 |
+
def get_caption_from_MD(image_in):
|
51 |
+
client = Client("https://vikhyatk-moondream1.hf.space/")
|
52 |
+
result = client.predict(
|
53 |
+
image_in, # filepath in 'image' Image component
|
54 |
+
"Describe character like if it was fictional", # str in 'Question' Textbox component
|
55 |
+
api_name="/answer_question"
|
56 |
+
)
|
57 |
+
print(result)
|
58 |
+
return result
|
59 |
+
|
60 |
+
|
61 |
+
import re
|
62 |
+
import torch
|
63 |
+
from transformers import pipeline
|
64 |
+
|
65 |
+
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")
|
66 |
+
|
67 |
+
@spaces.GPU(enable_queue=True)
|
68 |
+
def get_llm_idea(user_prompt):
|
69 |
+
agent_maker_sys = f"""
|
70 |
+
|
71 |
+
"""
|
72 |
+
|
73 |
+
instruction = f"""
|
74 |
+
<|system|>
|
75 |
+
{agent_maker_sys}</s>
|
76 |
+
<|user|>
|
77 |
+
"""
|
78 |
+
|
79 |
+
prompt = f"{instruction.strip()}\n{user_prompt}</s>"
|
80 |
+
#print(f"PROMPT: {prompt}")
|
81 |
+
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
82 |
+
return outputs
|
83 |
+
|
84 |
+
|
85 |
+
def infer(image_in, cap_type):
|
86 |
+
gr.Info("Getting image description...")
|
87 |
+
if cap_type == "Fictional" :
|
88 |
+
user_prompt = get_caption_from_MD(image_in)
|
89 |
+
elif cap_type == "Literal" :
|
90 |
+
user_prompt = get_caption_from_kosmos(image_in)
|
91 |
+
|
92 |
+
gr.Info("Building a system according to the image caption ...")
|
93 |
+
outputs = get_llm_idea(user_prompt)
|
94 |
+
|
95 |
+
|
96 |
+
pattern = r'\<\|system\|\>(.*?)\<\|assistant\|\>'
|
97 |
+
cleaned_text = re.sub(pattern, '', outputs[0]["generated_text"], flags=re.DOTALL)
|
98 |
+
|
99 |
+
print(f"SUGGESTED LLM: {cleaned_text}")
|
100 |
+
|
101 |
+
return user_prompt, cleaned_text.lstrip("\n")
|
102 |
+
|
103 |
+
title = f"Magic Card Generator",
|
104 |
+
description = f""
|
105 |
+
|
106 |
+
css = """
|
107 |
+
#col-container{
|
108 |
+
margin: 0 auto;
|
109 |
+
max-width: 780px;
|
110 |
+
text-align: left;
|
111 |
+
}
|
112 |
+
/* fix examples gallery width on mobile */
|
113 |
+
div#component-14 > .gallery > .gallery-item > .container > img {
|
114 |
+
width: auto!important;
|
115 |
+
}
|
116 |
+
"""
|
117 |
+
|
118 |
+
with gr.Blocks(css=css) as demo:
|
119 |
+
with gr.Column(elem_id="col-container"):
|
120 |
+
gr.HTML(f"""
|
121 |
+
<h2 style="text-align: center;">LLM Agent from a Picture</h2>
|
122 |
+
<p style="text-align: center;">{description}</p>
|
123 |
+
""")
|
124 |
+
|
125 |
+
with gr.Row():
|
126 |
+
with gr.Column():
|
127 |
+
image_in = gr.Image(
|
128 |
+
label = "Image reference",
|
129 |
+
type = "filepath",
|
130 |
+
elem_id = "image-in"
|
131 |
+
)
|
132 |
+
cap_type = gr.Radio(
|
133 |
+
label = "Caption type",
|
134 |
+
choices = [
|
135 |
+
"Literal",
|
136 |
+
"Fictional"
|
137 |
+
],
|
138 |
+
value = "Fictional"
|
139 |
+
)
|
140 |
+
submit_btn = gr.Button("Make LLM system from my pic !")
|
141 |
+
with gr.Column():
|
142 |
+
caption = gr.Textbox(
|
143 |
+
label = "Image caption",
|
144 |
+
elem_id = "image-caption"
|
145 |
+
)
|
146 |
+
result = gr.Textbox(
|
147 |
+
label = "Suggested System",
|
148 |
+
lines = 6,
|
149 |
+
max_lines = 30,
|
150 |
+
elem_id = "suggested-system-prompt"
|
151 |
+
)
|
152 |
+
|
153 |
+
|
154 |
+
submit_btn.click(
|
155 |
+
fn = infer,
|
156 |
+
inputs = [
|
157 |
+
image_in,
|
158 |
+
cap_type
|
159 |
+
],
|
160 |
+
outputs =[
|
161 |
+
caption,
|
162 |
+
result
|
163 |
+
]
|
164 |
+
)
|
165 |
+
|
166 |
+
demo.queue().launch(show_api=False, show_error=True)
|