Spaces:
Running
on
L40S
Running
on
L40S
import gradio as gr | |
from urllib.parse import urlparse | |
import requests | |
import time | |
import os | |
from utils.gradio_helpers import parse_outputs, process_outputs | |
inputs = [] | |
inputs.append(gr.Image( | |
label="Image", type="filepath" | |
)) | |
inputs.append(gr.Slider( | |
label="Rotate Pitch", info='''Rotation pitch: Adjusts the up and down tilt of the face''', value=0, | |
minimum=-20, maximum=20 | |
)) | |
inputs.append(gr.Slider( | |
label="Rotate Yaw", info='''Rotation yaw: Adjusts the left and right turn of the face''', value=0, | |
minimum=-20, maximum=20 | |
)) | |
inputs.append(gr.Slider( | |
label="Rotate Roll", info='''Rotation roll: Adjusts the tilt of the face to the left or right''', value=0, | |
minimum=-20, maximum=20 | |
)) | |
inputs.append(gr.Slider( | |
label="Blink", info='''Blink: Controls the degree of eye closure''', value=0, | |
minimum=-20, maximum=5 | |
)) | |
inputs.append(gr.Slider( | |
label="Eyebrow", info='''Eyebrow: Adjusts the height and shape of the eyebrows''', value=0, | |
minimum=-10, maximum=15 | |
)) | |
inputs.append(gr.Number( | |
label="Wink", info='''Wink: Controls the degree of one eye closing''', value=0 | |
)) | |
inputs.append(gr.Slider( | |
label="Pupil X", info='''Pupil X: Adjusts the horizontal position of the pupils''', value=0, | |
minimum=-15, maximum=15 | |
)) | |
inputs.append(gr.Slider( | |
label="Pupil Y", info='''Pupil Y: Adjusts the vertical position of the pupils''', value=0, | |
minimum=-15, maximum=15 | |
)) | |
inputs.append(gr.Slider( | |
label="Aaa", info='''AAA: Controls the mouth opening for 'aaa' sound''', value=0, | |
minimum=-30, maximum=120 | |
)) | |
inputs.append(gr.Slider( | |
label="Eee", info='''EEE: Controls the mouth shape for 'eee' sound''', value=0, | |
minimum=-20, maximum=15 | |
)) | |
inputs.append(gr.Slider( | |
label="Woo", info='''WOO: Controls the mouth shape for 'woo' sound''', value=0, | |
minimum=-20, maximum=15 | |
)) | |
inputs.append(gr.Slider( | |
label="Smile", info='''Smile: Adjusts the degree of smiling''', value=0, | |
minimum=-0.3, maximum=1.3 | |
)) | |
inputs.append(gr.Number( | |
label="Src Ratio", info='''Source ratio''', value=1 | |
)) | |
inputs.append(gr.Slider( | |
label="Sample Ratio", info='''Sample ratio''', value=1, | |
minimum=-0.2, maximum=1.2 | |
)) | |
inputs.append(gr.Slider( | |
label="Crop Factor", info='''Crop factor''', value=1.7, | |
minimum=1.5, maximum=2.5 | |
)) | |
inputs.append(gr.Dropdown( | |
choices=['webp', 'jpg', 'png'], label="output_format", info='''Format of the output images''', value="webp" | |
)) | |
inputs.append(gr.Number( | |
label="Output Quality", info='''Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.''', value=95 | |
)) | |
names = ['image', 'rotate_pitch', 'rotate_yaw', 'rotate_roll', 'blink', 'eyebrow', 'wink', 'pupil_x', 'pupil_y', 'aaa', 'eee', 'woo', 'smile', 'src_ratio', 'sample_ratio', 'crop_factor', 'output_format', 'output_quality'] | |
outputs = [] | |
outputs.append(gr.Image()) | |
expected_outputs = len(outputs) | |
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)): | |
headers = {'Content-Type': 'application/json'} | |
payload = {"input": {}} | |
parsed_url = urlparse(str(request.url)) | |
base_url = parsed_url.scheme + "://" + parsed_url.netloc | |
for i, key in enumerate(names): | |
value = args[i] | |
if value and (os.path.exists(str(value))): | |
value = f"{base_url}/file=" + value | |
if value is not None and value != "": | |
payload["input"][key] = value | |
response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload) | |
if response.status_code == 201: | |
follow_up_url = response.json()["urls"]["get"] | |
response = requests.get(follow_up_url, headers=headers) | |
while response.json()["status"] != "succeeded": | |
if response.json()["status"] == "failed": | |
raise gr.Error("The submission failed!") | |
response = requests.get(follow_up_url, headers=headers) | |
time.sleep(1) | |
if response.status_code == 200: | |
json_response = response.json() | |
#If the output component is JSON return the entire output response | |
if(outputs[0].get_config()["name"] == "json"): | |
return json_response["output"] | |
predict_outputs = parse_outputs(json_response["output"]) | |
processed_outputs = process_outputs(predict_outputs) | |
difference_outputs = expected_outputs - len(processed_outputs) | |
# If less outputs than expected, hide the extra ones | |
if difference_outputs > 0: | |
extra_outputs = [gr.update(visible=False)] * difference_outputs | |
processed_outputs.extend(extra_outputs) | |
# If more outputs than expected, cap the outputs to the expected number | |
elif difference_outputs < 0: | |
processed_outputs = processed_outputs[:difference_outputs] | |
return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0] | |
else: | |
if(response.status_code == 409): | |
raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.") | |
raise gr.Error(f"The submission failed! Error: {response.status_code}") | |
title = "Demo for expression-editor cog image by fofr" | |
model_description = "None" | |
app = gr.Interface( | |
fn=predict, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
description=model_description, | |
allow_flagging="never", | |
) | |
app.launch(share=True) | |