Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModel
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# Load the model and tokenizer
|
9 |
+
model_path = "ByteDance/Sa2VA-4B"
|
10 |
+
|
11 |
+
model = AutoModel.from_pretrained(
|
12 |
+
model_path,
|
13 |
+
torch_dtype = torch.bfloat16,
|
14 |
+
low_cpu_mem_usage = True,
|
15 |
+
use_flash_attn = True,
|
16 |
+
trust_remote_code = True
|
17 |
+
).eval().cuda()
|
18 |
+
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
20 |
+
model_path,
|
21 |
+
trust_remote_code = True,
|
22 |
+
use_fast = False
|
23 |
+
)
|
24 |
+
|
25 |
+
def image_vision(image_input_path, prompt):
|
26 |
+
image_path = image_input_path
|
27 |
+
text_prompts = f"<image>{prompt}"
|
28 |
+
image = Image.open(image_path).convert('RGB')
|
29 |
+
input_dict = {
|
30 |
+
'image': image,
|
31 |
+
'text': text_prompts,
|
32 |
+
'past_text': '',
|
33 |
+
'mask_prompts': None,
|
34 |
+
'tokenizer': tokenizer,
|
35 |
+
}
|
36 |
+
return_dict = model.predict_forward(**input_dict)
|
37 |
+
answer = return_dict["prediction"] # the text format answer
|
38 |
+
print(answer)
|
39 |
+
|
40 |
+
def main_infer(image_input_path, prompt):
|
41 |
+
|
42 |
+
response = image_vision(image_input_path, prompt)
|
43 |
+
return response
|
44 |
+
|
45 |
+
# Gradio UI
|
46 |
+
|
47 |
+
with gr.Blocks() as demo:
|
48 |
+
with gr.Column():
|
49 |
+
with gr.Row():
|
50 |
+
with gr.Column():
|
51 |
+
image_input = gr.Image(label="Image IN")
|
52 |
+
with gr.Row():
|
53 |
+
instruction = gr.Textbox(label="Instruction")
|
54 |
+
submit_btn = gr.Button("SUbmit", scale=1)
|
55 |
+
with gr.Column():
|
56 |
+
output_res = gr.Textbox(label="Response")
|
57 |
+
|
58 |
+
submit_btn.click(
|
59 |
+
fn = main_infer,
|
60 |
+
inputs = [image_input, instruction],
|
61 |
+
outputs = [output_res]
|
62 |
+
)
|
63 |
+
|
64 |
+
demo.queue().launch(show_api=False, show_error=True)
|