Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import Optional, Tuple | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import is_torch_available, logging | |
logger = logging.get_logger(__name__) | |
if is_torch_available(): | |
import torch | |
def _compute_default_rope_parameters( | |
config: Optional[PretrainedConfig] = None, | |
device: Optional["torch.device"] = None, | |
seq_len: Optional[int] = None, | |
**rope_kwargs, | |
) -> Tuple["torch.Tensor", float]: | |
""" | |
Computes the inverse frequencies according to the original RoPE implementation | |
Args: | |
config ([`~transformers.PretrainedConfig`]): | |
The model configuration. | |
device (`torch.device`): | |
The device to use for initialization of the inverse frequencies. | |
seq_len (`int`, *optional*): | |
The current sequence length. Unused for this type of RoPE. | |
rope_kwargs (`Dict`, *optional*): | |
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45. | |
Returns: | |
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the | |
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE). | |
""" | |
if config is not None and len(rope_kwargs) > 0: | |
raise ValueError( | |
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in " | |
f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}" | |
) | |
if len(rope_kwargs) > 0: | |
base = rope_kwargs["base"] | |
dim = rope_kwargs["dim"] | |
elif config is not None: | |
base = config.rope_theta | |
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 | |
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) | |
dim = int(head_dim * partial_rotary_factor) | |
attention_factor = 1.0 # Unused in this type of RoPE | |
# Compute the inverse frequencies | |
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim)) | |
return inv_freq, attention_factor | |
def _compute_linear_scaling_rope_parameters( | |
config: Optional[PretrainedConfig] = None, | |
device: Optional["torch.device"] = None, | |
seq_len: Optional[int] = None, | |
**rope_kwargs, | |
) -> Tuple["torch.Tensor", float]: | |
""" | |
Computes the inverse frequencies with linear scaling. Credits to the Reddit user /u/kaiokendev | |
Args: | |
config ([`~transformers.PretrainedConfig`]): | |
The model configuration. | |
device (`torch.device`): | |
The device to use for initialization of the inverse frequencies. | |
seq_len (`int`, *optional*): | |
The current sequence length. Unused for this type of RoPE. | |
rope_kwargs (`Dict`, *optional*): | |
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45. | |
Returns: | |
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the | |
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE). | |
""" | |
if config is not None and len(rope_kwargs) > 0: | |
raise ValueError( | |
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in " | |
f"`_compute_linear_scaling_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}" | |
) | |
if len(rope_kwargs) > 0: | |
factor = rope_kwargs["factor"] | |
elif config is not None: | |
factor = config.rope_scaling["factor"] | |
# Gets the default RoPE parameters | |
inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs) | |
# Then applies linear scaling to the frequencies. | |
# NOTE: originally, scaling was applied to the position_ids. However, we get `embs = inv_freq @ position_ids`, so | |
# applying scaling to the inverse frequencies is equivalent. | |
inv_freq /= factor | |
return inv_freq, attention_factor | |
def _compute_dynamic_ntk_parameters( | |
config: Optional[PretrainedConfig] = None, | |
device: Optional["torch.device"] = None, | |
seq_len: Optional[int] = None, | |
**rope_kwargs, | |
) -> Tuple["torch.Tensor", float]: | |
""" | |
Computes the inverse frequencies with NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla | |
Args: | |
config ([`~transformers.PretrainedConfig`]): | |
The model configuration. | |
device (`torch.device`): | |
The device to use for initialization of the inverse frequencies. | |
seq_len (`int`, *optional*): | |
The current sequence length, used to update the dynamic RoPE at inference time. | |
rope_kwargs (`Dict`, *optional*): | |
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45. | |
Returns: | |
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the | |
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE). | |
""" | |
# TODO (joao): use the new `original_max_position_embeddings` from rope_scaling | |
if config is not None and len(rope_kwargs) > 0: | |
raise ValueError( | |
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in " | |
f"`_compute_dynamic_ntk_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}" | |
) | |
if len(rope_kwargs) > 0: | |
base = rope_kwargs["base"] | |
dim = rope_kwargs["dim"] | |
max_position_embeddings = rope_kwargs["max_position_embeddings"] | |
factor = rope_kwargs["factor"] | |
elif config is not None: | |
base = config.rope_theta | |
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 | |
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) | |
dim = int(head_dim * partial_rotary_factor) | |
max_position_embeddings = config.max_position_embeddings | |
factor = config.rope_scaling["factor"] | |
attention_factor = 1.0 # Unused in this type of RoPE | |
# seq_len: default to max_position_embeddings, e.g. at init time | |
seq_len = seq_len if seq_len is not None and seq_len > max_position_embeddings else max_position_embeddings | |
# Compute the inverse frequencies | |
base = base * ((factor * seq_len / max_position_embeddings) - (factor - 1)) ** (dim / (dim - 2)) | |
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim)) | |
return inv_freq, attention_factor | |
def _compute_yarn_parameters( | |
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs | |
) -> Tuple["torch.Tensor", float]: | |
""" | |
Computes the inverse frequencies with NTK scaling. Please refer to the | |
[original paper](https://arxiv.org/abs/2309.00071) | |
Args: | |
config ([`~transformers.PretrainedConfig`]): | |
The model configuration. | |
device (`torch.device`): | |
The device to use for initialization of the inverse frequencies. | |
seq_len (`int`, *optional*): | |
The current sequence length. Unused for this type of RoPE. | |
rope_kwargs (`Dict`, *optional*): | |
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45. | |
Returns: | |
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the | |
post-processing scaling factor applied to the computed cos/sin. | |
""" | |
# No need to keep BC with yarn, unreleased when this new pattern was created. | |
if len(rope_kwargs) > 0: | |
raise ValueError( | |
f"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_yarn_parameters`, got {rope_kwargs}" | |
) | |
base = config.rope_theta | |
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 | |
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) | |
dim = int(head_dim * partial_rotary_factor) | |
max_position_embeddings = config.max_position_embeddings | |
factor = config.rope_scaling["factor"] | |
# Sets the attention factor as suggested in the paper | |
attention_factor = config.rope_scaling.get("attention_factor") | |
if attention_factor is None: | |
attention_factor = 0.1 * math.log(factor) + 1.0 | |
# Optional config options | |
# beta_fast/beta_slow: as suggested in the paper, default to 32/1 (correspondingly) | |
beta_fast = config.rope_scaling.get("beta_fast") or 32 | |
beta_slow = config.rope_scaling.get("beta_slow") or 1 | |
# Compute the inverse frequencies | |
def find_correction_dim(num_rotations, dim, base, max_position_embeddings): | |
"""Inverse dimension formula to find the dimension based on the number of rotations""" | |
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base)) | |
def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings): | |
"""Find dimension range bounds based on rotations""" | |
low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings)) | |
high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings)) | |
return max(low, 0), min(high, dim - 1) | |
def linear_ramp_factor(min, max, dim): | |
if min == max: | |
max += 0.001 # Prevent singularity | |
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) | |
ramp_func = torch.clamp(linear_func, 0, 1) | |
return ramp_func | |
# Note on variable naming: "interpolation" comes from the original technique, where we interpolate the position IDs | |
# to expand the possible context length. In other words, interpolation = apply scaling factor. | |
pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim) | |
inv_freq_extrapolation = 1.0 / pos_freqs | |
inv_freq_interpolation = 1.0 / (factor * pos_freqs) | |
low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings) | |
# Get n-dimensional rotational scaling corrected for extrapolation | |
inv_freq_extrapolation_factor = 1 - linear_ramp_factor(low, high, dim // 2).float().to(device) | |
inv_freq = ( | |
inv_freq_interpolation * (1 - inv_freq_extrapolation_factor) | |
+ inv_freq_extrapolation * inv_freq_extrapolation_factor | |
) | |
return inv_freq, attention_factor | |
def _compute_longrope_parameters( | |
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs | |
) -> Tuple["torch.Tensor", float]: | |
""" | |
Computes the inverse frequencies with LongRoPE scaling. Please refer to the | |
[original implementation](https://github.com/microsoft/LongRoPE) | |
Args: | |
config ([`~transformers.PretrainedConfig`]): | |
The model configuration. | |
device (`torch.device`): | |
The device to use for initialization of the inverse frequencies. | |
seq_len (`int`, *optional*): | |
The current sequence length. | |
rope_kwargs (`Dict`, *optional*): | |
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45. | |
Returns: | |
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the | |
post-processing scaling factor applied to the computed cos/sin. | |
""" | |
# TODO (joao): use the new `original_max_position_embeddings` from rope_scaling | |
# No need to keep BC with longrope, unreleased when this new pattern was created. | |
if len(rope_kwargs) > 0: | |
raise ValueError( | |
"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_longrope_parameters`, got " | |
f"{rope_kwargs}" | |
) | |
base = config.rope_theta | |
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 | |
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) | |
dim = int(head_dim * partial_rotary_factor) | |
long_factor = config.rope_scaling["long_factor"] | |
short_factor = config.rope_scaling["short_factor"] | |
factor = config.rope_scaling.get("factor") | |
attention_factor = config.rope_scaling.get("attention_factor") | |
# NOTE: Phi3 (and potentially other models) modify `max_position_embeddings` and have a | |
# `original_max_position_embeddings` field containing the pretrained value. They use the ratio between these two | |
# values to compute the default attention scaling factor, instead of using `factor`. | |
if hasattr(config, "original_max_position_embeddings"): | |
if seq_len and seq_len < config.original_max_position_embeddings: | |
expanded_max_position_embeddings = config.original_max_position_embeddings | |
else: | |
expanded_max_position_embeddings = config.max_position_embeddings | |
max_position_embeddings = config.original_max_position_embeddings | |
factor = expanded_max_position_embeddings / max_position_embeddings | |
else: | |
max_position_embeddings = config.max_position_embeddings | |
expanded_max_position_embeddings = max_position_embeddings * factor | |
# Sets the attention factor as suggested in the paper | |
if attention_factor is None: | |
if factor <= 1.0: | |
attention_factor = 1.0 | |
else: | |
attention_factor = math.sqrt(1 + math.log(factor) / math.log(max_position_embeddings)) | |
# Compute the inverse frequencies -- scaled based on the target sequence length | |
if expanded_max_position_embeddings > max_position_embeddings: | |
ext_factors = torch.tensor(long_factor, dtype=torch.float32, device=device) | |
else: | |
ext_factors = torch.tensor(short_factor, dtype=torch.float32, device=device) | |
inv_freq_shape = torch.arange(0, dim, 2, dtype=torch.int64, device=device).float() / dim | |
inv_freq = 1.0 / (ext_factors * base**inv_freq_shape) | |
return inv_freq, attention_factor | |
def _compute_llama3_parameters( | |
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs | |
) -> Tuple["torch.Tensor", float]: | |
""" | |
Computes the inverse frequencies for llama 3.1. | |
Args: | |
config ([`~transformers.PretrainedConfig`]): | |
The model configuration. | |
device (`torch.device`): | |
The device to use for initialization of the inverse frequencies. | |
seq_len (`int`, *optional*): | |
The current sequence length. Unused for this type of RoPE. | |
rope_kwargs (`Dict`, *optional*): | |
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45. | |
Returns: | |
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the | |
post-processing scaling factor applied to the computed cos/sin. | |
""" | |
# Gets the default RoPE parameters | |
inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs) | |
factor = config.rope_scaling["factor"] # `8` in the original implementation | |
low_freq_factor = config.rope_scaling["low_freq_factor"] # `1` in the original implementation | |
high_freq_factor = config.rope_scaling["high_freq_factor"] # `4` in the original implementation | |
old_context_len = config.rope_scaling["original_max_position_embeddings"] # `8192` in the original implementation | |
low_freq_wavelen = old_context_len / low_freq_factor | |
high_freq_wavelen = old_context_len / high_freq_factor | |
wavelen = 2 * math.pi / inv_freq | |
# wavelen < high_freq_wavelen: do nothing | |
# wavelen > low_freq_wavelen: divide by factor | |
inv_freq_llama = torch.where(wavelen > low_freq_wavelen, inv_freq / factor, inv_freq) | |
# otherwise: interpolate between the two, using a smooth factor | |
smooth_factor = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) | |
smoothed_inv_freq = (1 - smooth_factor) * inv_freq_llama / factor + smooth_factor * inv_freq_llama | |
is_medium_freq = ~(wavelen < high_freq_wavelen) * ~(wavelen > low_freq_wavelen) | |
inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama) | |
return inv_freq_llama, attention_factor | |
# This maps the "rope_type" string field in rope config to the corresponding function to compute the RoPE parameters | |
# from the model config. You can append new {'rope_type': callable} pairs to this dictionary to enable custom RoPE | |
# parameterizations, as long as the callable has the same signature. | |
ROPE_INIT_FUNCTIONS = { | |
"default": _compute_default_rope_parameters, | |
"linear": _compute_linear_scaling_rope_parameters, | |
"dynamic": _compute_dynamic_ntk_parameters, | |
"yarn": _compute_yarn_parameters, | |
"longrope": _compute_longrope_parameters, | |
"llama3": _compute_llama3_parameters, | |
} | |
def _check_received_keys( | |
rope_type: str, | |
received_keys: set, | |
required_keys: set, | |
optional_keys: Optional[set] = None, | |
ignore_keys: Optional[set] = None, | |
): | |
"""Compare the received keys in `config.rope_scaling` against the expected and optional keys""" | |
# BC: "rope_type" was originally "type" -- let's check for "rope_type" when "type" is present | |
if "type" in received_keys: | |
received_keys -= {"type"} | |
required_keys.add("rope_type") | |
# Some models need to store model-specific keys, and we don't want to throw warning at them | |
if ignore_keys is not None: | |
received_keys -= ignore_keys | |
missing_keys = required_keys - received_keys | |
if missing_keys: | |
raise KeyError(f"Missing required keys in `rope_scaling` for 'rope_type'='{rope_type}': {missing_keys}") | |
if optional_keys is not None: | |
unused_keys = received_keys - required_keys - optional_keys | |
else: | |
unused_keys = received_keys - required_keys | |
if unused_keys: | |
logger.warning(f"Unrecognized keys in `rope_scaling` for 'rope_type'='{rope_type}': {unused_keys}") | |
def _validate_default_rope_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None): | |
rope_scaling = config.rope_scaling | |
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type" | |
required_keys = {"rope_type"} | |
received_keys = set(rope_scaling.keys()) | |
_check_received_keys(rope_type, received_keys, required_keys, ignore_keys=ignore_keys) | |
def _validate_linear_scaling_rope_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None): | |
rope_scaling = config.rope_scaling | |
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type" | |
required_keys = {"rope_type", "factor"} | |
received_keys = set(rope_scaling.keys()) | |
_check_received_keys(rope_type, received_keys, required_keys, ignore_keys=ignore_keys) | |
factor = rope_scaling["factor"] | |
if factor is None or not isinstance(factor, float) or factor < 1.0: | |
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}") | |
def _validate_dynamic_scaling_rope_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None): | |
rope_scaling = config.rope_scaling | |
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type" | |
required_keys = {"rope_type", "factor"} | |
# TODO (joao): update logic for the inclusion of `original_max_position_embeddings` | |
optional_keys = {"original_max_position_embeddings"} | |
received_keys = set(rope_scaling.keys()) | |
_check_received_keys(rope_type, received_keys, required_keys, optional_keys, ignore_keys=ignore_keys) | |
factor = rope_scaling["factor"] | |
if factor is None or not isinstance(factor, float) or factor < 1.0: | |
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}") | |
def _validate_yarn_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None): | |
rope_scaling = config.rope_scaling | |
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type" | |
required_keys = {"rope_type", "factor"} | |
optional_keys = {"attention_factor", "beta_fast", "beta_slow"} | |
received_keys = set(rope_scaling.keys()) | |
_check_received_keys(rope_type, received_keys, required_keys, optional_keys, ignore_keys=ignore_keys) | |
factor = rope_scaling["factor"] | |
if factor is None or not isinstance(factor, float) or factor < 1.0: | |
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}") | |
attention_factor = rope_scaling.get("attention_factor") | |
if attention_factor is not None and (not isinstance(attention_factor, float) or attention_factor < 0): | |
logger.warning( | |
f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}" | |
) | |
beta_fast = rope_scaling.get("beta_fast") | |
if beta_fast is not None and not isinstance(beta_fast, float): | |
logger.warning(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}") | |
beta_slow = rope_scaling.get("beta_slow") | |
if beta_slow is not None and not isinstance(beta_slow, float): | |
logger.warning(f"`rope_scaling`'s beta_slow field must be a float, got {beta_slow}") | |
if (beta_fast or 32) < (beta_slow or 1): | |
logger.warning( | |
f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} " | |
f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)" | |
) | |
def _validate_longrope_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None): | |
rope_scaling = config.rope_scaling | |
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type" | |
required_keys = {"rope_type", "short_factor", "long_factor"} | |
# TODO (joao): update logic for the inclusion of `original_max_position_embeddings` | |
optional_keys = {"attention_factor", "factor", "original_max_position_embeddings"} | |
received_keys = set(rope_scaling.keys()) | |
_check_received_keys(rope_type, received_keys, required_keys, optional_keys, ignore_keys=ignore_keys) | |
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 | |
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) | |
dim = int(head_dim * partial_rotary_factor) | |
short_factor = rope_scaling.get("short_factor") | |
if not isinstance(short_factor, list) and all(isinstance(x, (int, float)) for x in short_factor): | |
logger.warning(f"`rope_scaling`'s short_factor field must be a list of numbers, got {short_factor}") | |
if not len(short_factor) == dim // 2: | |
logger.warning(f"`rope_scaling`'s short_factor field must have length {dim // 2}, got {len(short_factor)}") | |
long_factor = rope_scaling.get("long_factor") | |
if not isinstance(long_factor, list) and all(isinstance(x, (int, float)) for x in long_factor): | |
logger.warning(f"`rope_scaling`'s long_factor field must be a list of numbers, got {long_factor}") | |
if not len(long_factor) == dim // 2: | |
logger.warning(f"`rope_scaling`'s long_factor field must have length {dim // 2}, got {len(long_factor)}") | |
# Handle Phi3 divergence: prefer the use of `attention_factor` and/or `factor` over | |
# `original_max_position_embeddings` to compute internal variables. The latter lives outside `rope_scaling` and is | |
# unique to longrope (= undesirable) | |
if hasattr(config, "original_max_position_embeddings"): | |
logger.warning_once( | |
"This model has set a `original_max_position_embeddings` field, to be used together with " | |
"`max_position_embeddings` to determine a scaling factor. Please set the `factor` field of `rope_scaling`" | |
"with this ratio instead -- we recommend the use of this field over `original_max_position_embeddings`, " | |
"as it is compatible with most model architectures." | |
) | |
else: | |
factor = rope_scaling.get("factor") | |
if factor is None: | |
logger.warning("Missing required keys in `rope_scaling`: 'factor'") | |
elif not isinstance(factor, float) or factor < 1.0: | |
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}") | |
attention_factor = rope_scaling.get("attention_factor") | |
if attention_factor is not None: | |
if not isinstance(attention_factor, float) or attention_factor < 0.0: | |
logger.warning( | |
f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}" | |
) | |
def _validate_llama3_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None): | |
rope_scaling = config.rope_scaling | |
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type" | |
required_keys = {"rope_type", "factor", "original_max_position_embeddings", "low_freq_factor", "high_freq_factor"} | |
received_keys = set(rope_scaling.keys()) | |
_check_received_keys(rope_type, received_keys, required_keys, ignore_keys=ignore_keys) | |
factor = rope_scaling["factor"] | |
if factor is None or not isinstance(factor, float) or factor < 1.0: | |
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}") | |
low_freq_factor = rope_scaling["low_freq_factor"] | |
high_freq_factor = rope_scaling["high_freq_factor"] | |
if low_freq_factor is None or not isinstance(low_freq_factor, float): | |
logger.warning(f"`rope_scaling`'s low_freq_factor field must be a float, got {low_freq_factor}") | |
if high_freq_factor is None or not isinstance(high_freq_factor, float): | |
logger.warning(f"`rope_scaling`'s high_freq_factor field must be a float, got {high_freq_factor}") | |
if high_freq_factor <= low_freq_factor: | |
logger.warning( | |
"`rope_scaling`'s high_freq_factor field must be greater than low_freq_factor, got high_freq_factor=" | |
f"{high_freq_factor} and low_freq_factor={low_freq_factor}" | |
) | |
original_max_position_embeddings = rope_scaling["original_max_position_embeddings"] | |
if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int): | |
logger.warning( | |
"`rope_scaling`'s original_max_position_embeddings field must be an integer, got " | |
f"{original_max_position_embeddings}" | |
) | |
if original_max_position_embeddings >= config.max_position_embeddings: | |
logger.warning( | |
"`rope_scaling`'s original_max_position_embeddings field must be less than max_position_embeddings, got " | |
f"{original_max_position_embeddings} and max_position_embeddings={config.max_position_embeddings}" | |
) | |
# Like `ROPE_INIT_FUNCTIONS`, this validation function mapping can be dynamically updated for custom RoPE types. | |
ROPE_VALIDATION_FUNCTIONS = { | |
"default": _validate_default_rope_parameters, | |
"linear": _validate_linear_scaling_rope_parameters, | |
"dynamic": _validate_dynamic_scaling_rope_parameters, | |
"yarn": _validate_yarn_parameters, | |
"longrope": _validate_longrope_parameters, | |
"llama3": _validate_llama3_parameters, | |
} | |
def rope_config_validation(config: PretrainedConfig, ignore_keys: Optional[set] = None): | |
""" | |
Validate the RoPE config arguments, given a `PretrainedConfig` object | |
""" | |
rope_scaling = getattr(config, "rope_scaling", None) # not a default parameter in `PretrainedConfig` | |
if rope_scaling is None: | |
return | |
# BC: "rope_type" was originally "type" | |
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", "default")) | |
validation_fn = ROPE_VALIDATION_FUNCTIONS.get(rope_type) | |
if validation_fn is not None: | |
validation_fn(config, ignore_keys=ignore_keys) | |
else: | |
logger.warning( | |
f"Missing validation function mapping in `ROPE_VALIDATION_FUNCTIONS` for 'rope_type'='{rope_type}'" | |
) |