fffiloni's picture
Migrated from GitHub
d59f323 verified
from enum import Enum
import numpy as np
import torch
import torch.distributed as dist
from transformers import PreTrainedModel
from typing import List, Optional
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_EOS_TOKEN = '</s>'
DEFAULT_BOS_TOKEN = '<s>'
DEFAULT_UNK_TOKEN = '<unk>'
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
DEFAULT_BBOX_TOKEN = "<bbox>"
# Modified from https://github.com/haotian-liu/LLaVA/blob/82fc5e0e5f4393a4c26851fa32c69ab37ea3b146/llava/model/llava_arch.py#L99 # noqa: E501
def prepare_inputs_labels_for_multimodal(
llm: PreTrainedModel,
input_ids: torch.LongTensor = None,
position_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
**kwargs):
if pixel_values is None:
kwargs.update({
'input_ids': input_ids,
'position_ids': position_ids,
'attention_mask': attention_mask,
'past_key_values': past_key_values,
'inputs_embeds': None,
'labels': labels
})
return kwargs
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [
cur_input_ids[cur_attention_mask]
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
]
labels = [
cur_labels[cur_attention_mask]
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
]
new_inputs_embeds = []
new_labels = []
new_input_ids = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_pixel_values = pixel_values[cur_image_idx]
cur_inputs_embeds_1 = llm.get_input_embeddings()(cur_input_ids)
cur_inputs_embeds = torch.cat([cur_inputs_embeds_1, cur_pixel_values[0:0]], dim=0)
new_inputs_embeds.append(cur_inputs_embeds)
new_labels.append(labels[batch_idx])
new_input_ids.append(cur_input_ids)
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1:image_token_indices[i + 1]])
cur_labels_noim.append(cur_labels[image_token_indices[i] + 1:image_token_indices[i + 1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_inputs_embeds = llm.get_input_embeddings()(torch.cat(cur_input_ids_noim))
cur_inputs_embeds_no_im = torch.split(cur_inputs_embeds, split_sizes, dim=0)
cur_new_inputs_embeds = []
cur_new_labels = []
cur_new_input_ids = []
for i in range(num_images + 1):
cur_new_inputs_embeds.append(cur_inputs_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
cur_new_input_ids.append(cur_input_ids_noim[i])
if i < num_images:
cur_pixel_values = pixel_values[cur_image_idx]
cur_image_idx += 1
cur_new_inputs_embeds.append(cur_pixel_values)
cur_new_labels.append(torch.full((cur_pixel_values.shape[0], ), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_input_ids.append(torch.full((cur_pixel_values.shape[0], ), IMAGE_TOKEN_INDEX, device=cur_input_ids.device, dtype=cur_input_ids.dtype))
cur_new_inputs_embeds = torch.cat(cur_new_inputs_embeds)
cur_new_labels = torch.cat(cur_new_labels)
cur_new_input_ids = torch.cat(cur_new_input_ids)
new_inputs_embeds.append(cur_new_inputs_embeds)
new_labels.append(cur_new_labels)
new_input_ids.append(cur_new_input_ids)
# Combine them
max_len = max(x.shape[0] for x in new_inputs_embeds)
batch_size = len(new_inputs_embeds)
new_inputs_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
new_input_ids_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_input_ids[0].dtype, device=new_input_ids[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels, cur_new_input_ids) in enumerate(zip(new_inputs_embeds, new_labels, new_input_ids)):
cur_len = cur_new_embed.shape[0]
new_inputs_embeds_padded.append(torch.cat((cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
new_input_ids_padded[i, :cur_len] = cur_new_input_ids
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_inputs_embeds = torch.stack(new_inputs_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
new_input_ids = new_input_ids_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
kwargs.update({
'input_ids': None,
'position_ids': position_ids,
'attention_mask': attention_mask,
'past_key_values': past_key_values,
'inputs_embeds': new_inputs_embeds,
'labels': new_labels,
'new_input_ids': new_input_ids
})
return kwargs
class Summary(Enum):
NONE = 0
AVERAGE = 1
SUM = 2
COUNT = 3
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=":f", summary_type=Summary.AVERAGE):
self.name = name
self.fmt = fmt
self.summary_type = summary_type
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def all_reduce(self):
device = "cuda" if torch.cuda.is_available() else "cpu"
if isinstance(self.sum, np.ndarray):
total = torch.tensor(
self.sum.tolist()
+ [
self.count,
],
dtype=torch.float32,
device=device,
)
else:
total = torch.tensor(
[self.sum, self.count], dtype=torch.float32, device=device
)
dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False)
if total.shape[0] > 2:
self.sum, self.count = total[:-1].cpu().numpy(), total[-1].cpu().item()
else:
self.sum, self.count = total.tolist()
self.avg = self.sum / (self.count + 1e-5)
def __str__(self):
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
def summary(self):
fmtstr = ""
if self.summary_type is Summary.NONE:
fmtstr = ""
elif self.summary_type is Summary.AVERAGE:
fmtstr = "{name} {avg:.3f}"
elif self.summary_type is Summary.SUM:
fmtstr = "{name} {sum:.3f}"
elif self.summary_type is Summary.COUNT:
fmtstr = "{name} {count:.3f}"
else:
raise ValueError("invalid summary type %r" % self.summary_type)
return fmtstr.format(**self.__dict__)
def intersectionAndUnionGPU(output, target, K, ignore_index=255):
# 'K' classes, output and target sizes are N or N * L or N * H * W, each value in range 0 to K - 1.
assert output.dim() in [1, 2, 3]
assert output.shape == target.shape
output = output.view(-1)
target = target.view(-1)
output[target == ignore_index] = ignore_index
intersection = output[output == target]
area_intersection = torch.histc(intersection, bins=K, min=0, max=K - 1)
area_output = torch.histc(output, bins=K, min=0, max=K - 1)
area_target = torch.histc(target, bins=K, min=0, max=K - 1)
area_union = area_output + area_target - area_intersection
return area_intersection, area_union, area_target
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print("\t".join(entries))
def display_summary(self):
entries = [" *"]
entries += [meter.summary() for meter in self.meters]
print(" ".join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = "{:" + str(num_digits) + "d}"
return "[" + fmt + "/" + fmt.format(num_batches) + "]"
def dict_to_cuda(input_dict):
for k, v in input_dict.items():
if isinstance(input_dict[k], torch.Tensor):
input_dict[k] = v.cuda(non_blocking=True)
elif isinstance(v, list) and len(v) > 0:
input_dict[k] = [ele.cuda(non_blocking=True) if isinstance(ele, torch.Tensor) else ele for ele in v]
return input_dict