Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -35,6 +35,22 @@ def swap_hardware(hf_token, hardware="cpu-basic"):
|
|
35 |
headers = { "authorization" : f"Bearer {hf_token}"}
|
36 |
body = {'flavor': hardware}
|
37 |
requests.post(hardware_url, json = body, headers=headers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
def train_dreambooth_blora_sdxl(instance_data_dir, b_lora_trained_folder, instance_prompt, class_prompt, max_train_steps, checkpoint_steps):
|
40 |
|
@@ -91,6 +107,10 @@ def main(image_path, b_lora_trained_folder, instance_prompt, class_prompt, train
|
|
91 |
|
92 |
if instance_prompt == "":
|
93 |
raise gr.Error("You forgot to specify an instance prompt")
|
|
|
|
|
|
|
|
|
94 |
|
95 |
local_dir = "image_to_train"
|
96 |
# Check if the directory exists and create it if necessary
|
@@ -111,7 +131,8 @@ def main(image_path, b_lora_trained_folder, instance_prompt, class_prompt, train
|
|
111 |
|
112 |
your_username = api.whoami(token=hf_token)["name"]
|
113 |
|
114 |
-
swap_hardware(hf_token, hardware="cpu-basic")
|
|
|
115 |
|
116 |
return f"Done, your trained model has been stored in your models library: {your_username}/{b_lora_trained_folder}"
|
117 |
|
|
|
35 |
headers = { "authorization" : f"Bearer {hf_token}"}
|
36 |
body = {'flavor': hardware}
|
37 |
requests.post(hardware_url, json = body, headers=headers)
|
38 |
+
|
39 |
+
def swap_sleep_time(hf_token,sleep_time):
|
40 |
+
sleep_time_url = f"https://huggingface.co/api/spaces/{os.environ['SPACE_ID']}/sleeptime"
|
41 |
+
headers = { "authorization" : f"Bearer {hf_token}"}
|
42 |
+
body = {'seconds':sleep_time}
|
43 |
+
requests.post(sleep_time_url,json=body,headers=headers)
|
44 |
+
|
45 |
+
def get_sleep_time(hf_token):
|
46 |
+
sleep_time_url = f"https://huggingface.co/api/spaces/{os.environ['SPACE_ID']}"
|
47 |
+
headers = { "authorization" : f"Bearer {hf_token}"}
|
48 |
+
response = requests.get(sleep_time_url,headers=headers)
|
49 |
+
try:
|
50 |
+
gcTimeout = response.json()['runtime']['gcTimeout']
|
51 |
+
except:
|
52 |
+
gcTimeout = None
|
53 |
+
return gcTimeout
|
54 |
|
55 |
def train_dreambooth_blora_sdxl(instance_data_dir, b_lora_trained_folder, instance_prompt, class_prompt, max_train_steps, checkpoint_steps):
|
56 |
|
|
|
107 |
|
108 |
if instance_prompt == "":
|
109 |
raise gr.Error("You forgot to specify an instance prompt")
|
110 |
+
|
111 |
+
sleep_time = get_sleep_time(hf_token)
|
112 |
+
if sleep_time:
|
113 |
+
swap_sleep_time(hf_token, -1)
|
114 |
|
115 |
local_dir = "image_to_train"
|
116 |
# Check if the directory exists and create it if necessary
|
|
|
131 |
|
132 |
your_username = api.whoami(token=hf_token)["name"]
|
133 |
|
134 |
+
#swap_hardware(hf_token, hardware="cpu-basic")
|
135 |
+
swap_sleep_time(hf_token, 300)
|
136 |
|
137 |
return f"Done, your trained model has been stored in your models library: {your_username}/{b_lora_trained_folder}"
|
138 |
|