Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -111,7 +111,7 @@ def check_sleep_time():
|
|
111 |
|
112 |
return sleep_time_value, gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
113 |
|
114 |
-
def train_dreambooth_blora_sdxl(instance_data_dir, b_lora_trained_folder, instance_prompt,
|
115 |
|
116 |
script_filename = "train_dreambooth_b-lora_sdxl.py" # Assuming it's in the same folder
|
117 |
|
@@ -123,8 +123,8 @@ def train_dreambooth_blora_sdxl(instance_data_dir, b_lora_trained_folder, instan
|
|
123 |
f"--instance_data_dir={instance_data_dir}",
|
124 |
f"--output_dir={b_lora_trained_folder}",
|
125 |
f"--instance_prompt='{instance_prompt}'",
|
126 |
-
f"--class_prompt={class_prompt}",
|
127 |
-
|
128 |
"--num_validation_images=1",
|
129 |
"--validation_epochs=500",
|
130 |
"--resolution=1024",
|
@@ -168,7 +168,7 @@ def clear_directory(directory_path):
|
|
168 |
else:
|
169 |
print(f'The directory {directory_path} does not exist.')
|
170 |
|
171 |
-
def main(image_path, b_lora_trained_folder, instance_prompt,
|
172 |
|
173 |
if is_shared_ui:
|
174 |
raise gr.Error("This Space only works in duplicated instances")
|
@@ -207,7 +207,7 @@ def main(image_path, b_lora_trained_folder, instance_prompt, class_prompt, train
|
|
207 |
|
208 |
max_train_steps = training_steps
|
209 |
|
210 |
-
train_dreambooth_blora_sdxl(local_dir, b_lora_trained_folder, instance_prompt,
|
211 |
|
212 |
your_username = api.whoami(token=hf_token)["name"]
|
213 |
|
@@ -342,8 +342,8 @@ with gr.Blocks(css=css) as demo:
|
|
342 |
training_type = gr.Radio(label="Training type", choices=["style", "concept"], value="style", visible=False)
|
343 |
b_lora_name = gr.Textbox(label="Name your B-LoRa model", placeholder="b_lora_trained_folder", visible=False)
|
344 |
with gr.Row():
|
345 |
-
instance_prompt = gr.Textbox(label="Create instance prompt", placeholder="A [v42]
|
346 |
-
class_prompt = gr.Textbox(label="Specify class prompt", placeholder="style | person | dog ", visible=False)
|
347 |
training_steps = gr.Number(label="Training steps", value=1000, interactive=False, visible=False)
|
348 |
checkpoint_step = gr.Number(label="checkpoint step", visible=False, value=500)
|
349 |
|
@@ -362,7 +362,7 @@ with gr.Blocks(css=css) as demo:
|
|
362 |
demo.load(
|
363 |
fn = check_sleep_time,
|
364 |
inputs = None,
|
365 |
-
outputs = [current_sleep_time, sleep_time_message, b_lora_name, instance_prompt,
|
366 |
)
|
367 |
|
368 |
training_type.change(
|
@@ -373,7 +373,7 @@ with gr.Blocks(css=css) as demo:
|
|
373 |
|
374 |
train_btn.click(
|
375 |
fn = main,
|
376 |
-
inputs = [image, b_lora_name, instance_prompt,
|
377 |
outputs = [status]
|
378 |
)
|
379 |
|
|
|
111 |
|
112 |
return sleep_time_value, gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
113 |
|
114 |
+
def train_dreambooth_blora_sdxl(instance_data_dir, b_lora_trained_folder, instance_prompt, max_train_steps, checkpoint_steps):
|
115 |
|
116 |
script_filename = "train_dreambooth_b-lora_sdxl.py" # Assuming it's in the same folder
|
117 |
|
|
|
123 |
f"--instance_data_dir={instance_data_dir}",
|
124 |
f"--output_dir={b_lora_trained_folder}",
|
125 |
f"--instance_prompt='{instance_prompt}'",
|
126 |
+
#f"--class_prompt={class_prompt}",
|
127 |
+
f"--validation_prompt={instance_prompt} in {instance_prompt} style",
|
128 |
"--num_validation_images=1",
|
129 |
"--validation_epochs=500",
|
130 |
"--resolution=1024",
|
|
|
168 |
else:
|
169 |
print(f'The directory {directory_path} does not exist.')
|
170 |
|
171 |
+
def main(image_path, b_lora_trained_folder, instance_prompt, training_type, training_steps):
|
172 |
|
173 |
if is_shared_ui:
|
174 |
raise gr.Error("This Space only works in duplicated instances")
|
|
|
207 |
|
208 |
max_train_steps = training_steps
|
209 |
|
210 |
+
train_dreambooth_blora_sdxl(local_dir, b_lora_trained_folder, instance_prompt, max_train_steps, checkpoint_steps)
|
211 |
|
212 |
your_username = api.whoami(token=hf_token)["name"]
|
213 |
|
|
|
342 |
training_type = gr.Radio(label="Training type", choices=["style", "concept"], value="style", visible=False)
|
343 |
b_lora_name = gr.Textbox(label="Name your B-LoRa model", placeholder="b_lora_trained_folder", visible=False)
|
344 |
with gr.Row():
|
345 |
+
instance_prompt = gr.Textbox(label="Create instance prompt", placeholder="A [v42]", visible=False)
|
346 |
+
#class_prompt = gr.Textbox(label="Specify class prompt", placeholder="style | person | dog ", visible=False)
|
347 |
training_steps = gr.Number(label="Training steps", value=1000, interactive=False, visible=False)
|
348 |
checkpoint_step = gr.Number(label="checkpoint step", visible=False, value=500)
|
349 |
|
|
|
362 |
demo.load(
|
363 |
fn = check_sleep_time,
|
364 |
inputs = None,
|
365 |
+
outputs = [current_sleep_time, sleep_time_message, b_lora_name, instance_prompt, training_type, training_steps, train_btn]
|
366 |
)
|
367 |
|
368 |
training_type.change(
|
|
|
373 |
|
374 |
train_btn.click(
|
375 |
fn = main,
|
376 |
+
inputs = [image, b_lora_name, instance_prompt, training_type, training_steps],
|
377 |
outputs = [status]
|
378 |
)
|
379 |
|