fffiloni commited on
Commit
6c4222e
·
verified ·
1 Parent(s): 2eac672

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -0
app.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import os
4
+ import shutil
5
+ import requests
6
+ import subprocess
7
+ from subprocess import getoutput
8
+ from huggingface_hub import snapshot_download, HfApi, create_repo
9
+
10
+ api = HfApi()
11
+
12
+ hf_token = os.environ.get("HF_TOKEN_WITH_WRITE_PERMISSION")
13
+
14
+ def train_dreambooth_blora_sdxl(instance_data_dir, b_lora_trained_folder, instance_prompt, max_train_steps, checkpoint_steps):
15
+
16
+ script_filename = "train_dreambooth_b-lora_sdxl.py" # Assuming it's in the same folder
17
+
18
+ command = [
19
+ "accelerate",
20
+ "launch",
21
+ script_filename, # Use the local script
22
+ "--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0",
23
+ f"--instance_data_dir={instance_data_dir}",
24
+ f"--output_dir={b_lora_trained_folder}",
25
+ f"--instance_prompt={instance_prompt}",
26
+ "--resolution=1024",
27
+ "--rank=64",
28
+ "--train_batch_size=1",
29
+ "--learning_rate=5e-5",
30
+ "--lr_scheduler=constant",
31
+ "--lr_warmup_steps=0",
32
+ f"--max_train_steps={max_train_steps}",
33
+ f"--checkpointing_steps={checkpoint_steps}",
34
+ "--seed=0",
35
+ "--gradient_checkpointing",
36
+ "--use_8bit_adam",
37
+ "--mixed_precision=fp16",
38
+ "--push_to_hub",
39
+ f"--hub_token={hf_token}"
40
+ ]
41
+
42
+ try:
43
+ subprocess.run(command, check=True)
44
+ print("Training is finished!")
45
+
46
+ except subprocess.CalledProcessError as e:
47
+ print(f"An error occurred: {e}")
48
+
49
+ def main(image_path, b_lora_trained_folder, instance_prompt):
50
+
51
+ local_dir = "image_to_train"
52
+ # Check if the directory exists and create it if necessary
53
+ if not os.path.exists(local_dir):
54
+ os.makedirs(local_dir)
55
+
56
+ shutil.copy(image_path, local_dir)
57
+ print(f"source image has been copied in {local_dir} directory")
58
+
59
+ max_train_steps = 1000
60
+ checkpoint_steps = 500
61
+
62
+ train_dreambooth_blora_sdxl(local_dir, b_lora_trained_folder, instance_prompt, max_train_steps, checkpoint_steps)
63
+
64
+ your_username = api.whoami(token=hf_token)["name"]
65
+
66
+ return f"Done, your trained model has been stored in your models library: {your_username}/{b_lora_trained_folder}"
67
+
68
+ with gr.Blocks(css=css) as demo:
69
+ with gr.Column(elem_id="col-container"):
70
+ image = gr.Image(sources=[upload], type="filepath")
71
+ b_lora_name = gr.Textbox(label="b_lora_name", placeholder="b_lora_trained_folder")
72
+ instance_prompt = gr.Textbox(label="instance prompt", placeholder="[v42]")
73
+ train_btn = gr.Button("Train B-LoRa")
74
+ status = gr.Textbox(label="status")
75
+
76
+ train_btn.click(
77
+ fn = main,
78
+ inputs = [image, b_lora_name, instance_prompt],
79
+ outputs = [status]
80
+ )
81
+
82
+ demo.launch(debug=True)