Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,19 @@ api = HfApi()
|
|
11 |
|
12 |
hf_token = os.environ.get("HF_TOKEN_WITH_WRITE_PERMISSION")
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def train_dreambooth_blora_sdxl(instance_data_dir, b_lora_trained_folder, instance_prompt, max_train_steps, checkpoint_steps):
|
15 |
|
16 |
script_filename = "train_dreambooth_b-lora_sdxl.py" # Assuming it's in the same folder
|
@@ -50,6 +63,12 @@ def train_dreambooth_blora_sdxl(instance_data_dir, b_lora_trained_folder, instan
|
|
50 |
print(f"An error occurred: {e}")
|
51 |
|
52 |
def main(image_path, b_lora_trained_folder, instance_prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
local_dir = "image_to_train"
|
55 |
# Check if the directory exists and create it if necessary
|
@@ -73,6 +92,47 @@ css = """
|
|
73 |
"""
|
74 |
with gr.Blocks(css=css) as demo:
|
75 |
with gr.Column(elem_id="col-container"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
image = gr.Image(sources=["upload"], type="filepath")
|
77 |
b_lora_name = gr.Textbox(label="b_lora_name", placeholder="b_lora_trained_folder")
|
78 |
instance_prompt = gr.Textbox(label="instance prompt", placeholder="[v42]")
|
|
|
11 |
|
12 |
hf_token = os.environ.get("HF_TOKEN_WITH_WRITE_PERMISSION")
|
13 |
|
14 |
+
is_shared_ui = True if "fffiloni/train-dreambooth-lora-sdxl" in os.environ['SPACE_ID'] else False
|
15 |
+
|
16 |
+
is_gpu_associated = torch.cuda.is_available()
|
17 |
+
|
18 |
+
if is_gpu_associated:
|
19 |
+
gpu_info = getoutput('nvidia-smi')
|
20 |
+
if("A10G" in gpu_info):
|
21 |
+
which_gpu = "A10G"
|
22 |
+
elif("T4" in gpu_info):
|
23 |
+
which_gpu = "T4"
|
24 |
+
else:
|
25 |
+
which_gpu = "CPU"
|
26 |
+
|
27 |
def train_dreambooth_blora_sdxl(instance_data_dir, b_lora_trained_folder, instance_prompt, max_train_steps, checkpoint_steps):
|
28 |
|
29 |
script_filename = "train_dreambooth_b-lora_sdxl.py" # Assuming it's in the same folder
|
|
|
63 |
print(f"An error occurred: {e}")
|
64 |
|
65 |
def main(image_path, b_lora_trained_folder, instance_prompt):
|
66 |
+
|
67 |
+
if is_shared_ui:
|
68 |
+
raise gr.Error("This Space only works in duplicated instances")
|
69 |
+
|
70 |
+
if not is_gpu_associated:
|
71 |
+
raise gr.Error("Please associate a T4 or A10G GPU for this Space")
|
72 |
|
73 |
local_dir = "image_to_train"
|
74 |
# Check if the directory exists and create it if necessary
|
|
|
92 |
"""
|
93 |
with gr.Blocks(css=css) as demo:
|
94 |
with gr.Column(elem_id="col-container"):
|
95 |
+
if is_shared_ui:
|
96 |
+
top_description = gr.HTML(f'''
|
97 |
+
<div class="gr-prose">
|
98 |
+
<h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
|
99 |
+
Attention: this Space need to be duplicated to work</h2>
|
100 |
+
<p class="main-message">
|
101 |
+
To make it work, <strong>duplicate the Space</strong> and run it on your own profile using a <strong>private</strong> GPU (T4-small or A10G-small).<br />
|
102 |
+
A T4 costs <strong>US$0.60/h</strong>, so it should cost < US$1 to train most models.
|
103 |
+
</p>
|
104 |
+
<p class="actions">
|
105 |
+
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
|
106 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
|
107 |
+
</a>
|
108 |
+
to start training your own B-LoRa model
|
109 |
+
</p>
|
110 |
+
</div>
|
111 |
+
''', elem_id="warning-duplicate")
|
112 |
+
else:
|
113 |
+
if(is_gpu_associated):
|
114 |
+
top_description = gr.HTML(f'''
|
115 |
+
<div class="gr-prose">
|
116 |
+
<h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
|
117 |
+
You have successfully associated a {which_gpu} GPU to the B-LoRa Training Space π</h2>
|
118 |
+
<p>
|
119 |
+
You can now train your model! You will be billed by the minute from when you activated the GPU until when it is turned off.
|
120 |
+
</p>
|
121 |
+
</div>
|
122 |
+
''', elem_id="warning-ready")
|
123 |
+
else:
|
124 |
+
top_description = gr.HTML(f'''
|
125 |
+
<div class="gr-prose">
|
126 |
+
<h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
|
127 |
+
You have successfully duplicated the B-LoRa Training Space π</h2>
|
128 |
+
<p>There's only one step left before you can train your model: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4-small or A10G-small GPU</b> to it (via the Settings tab)</a> and run the training below.
|
129 |
+
You will be billed by the minute from when you activate the GPU until when it is turned off.</p>
|
130 |
+
<p class="actions">
|
131 |
+
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">π₯ Set recommended GPU</a>
|
132 |
+
</p>
|
133 |
+
</div>
|
134 |
+
''', elem_id="warning-setgpu")
|
135 |
+
|
136 |
image = gr.Image(sources=["upload"], type="filepath")
|
137 |
b_lora_name = gr.Textbox(label="b_lora_name", placeholder="b_lora_trained_folder")
|
138 |
instance_prompt = gr.Textbox(label="instance prompt", placeholder="[v42]")
|