Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import glob | |
import os | |
import platform | |
import re | |
from pkg_resources import DistributionNotFound, get_distribution, parse_version | |
from setuptools import find_packages, setup | |
EXT_TYPE = '' | |
try: | |
import torch | |
if torch.__version__ == 'parrots': | |
from parrots.utils.build_extension import BuildExtension | |
EXT_TYPE = 'parrots' | |
elif (hasattr(torch, 'is_mlu_available') and torch.is_mlu_available()) or \ | |
os.getenv('FORCE_MLU', '0') == '1': | |
from torch_mlu.utils.cpp_extension import BuildExtension | |
EXT_TYPE = 'pytorch' | |
else: | |
from torch.utils.cpp_extension import BuildExtension | |
EXT_TYPE = 'pytorch' | |
cmd_class = {'build_ext': BuildExtension} | |
except ModuleNotFoundError: | |
cmd_class = {} | |
print('Skip building ext ops due to the absence of torch.') | |
def choose_requirement(primary, secondary): | |
"""If some version of primary requirement installed, return primary, else | |
return secondary.""" | |
try: | |
name = re.split(r'[!<>=]', primary)[0] | |
get_distribution(name) | |
except DistributionNotFound: | |
return secondary | |
return str(primary) | |
def get_version(): | |
version_file = 'mmcv/version.py' | |
with open(version_file, encoding='utf-8') as f: | |
exec(compile(f.read(), version_file, 'exec')) | |
return locals()['__version__'] | |
def parse_requirements(fname='requirements/runtime.txt', with_version=True): | |
"""Parse the package dependencies listed in a requirements file but strips | |
specific versioning information. | |
Args: | |
fname (str): path to requirements file | |
with_version (bool, default=False): if True include version specs | |
Returns: | |
List[str]: list of requirements items | |
CommandLine: | |
python -c "import setup; print(setup.parse_requirements())" | |
""" | |
import sys | |
from os.path import exists | |
require_fpath = fname | |
def parse_line(line): | |
"""Parse information from a line in a requirements text file.""" | |
if line.startswith('-r '): | |
# Allow specifying requirements in other files | |
target = line.split(' ')[1] | |
for info in parse_require_file(target): | |
yield info | |
else: | |
info = {'line': line} | |
if line.startswith('-e '): | |
info['package'] = line.split('#egg=')[1] | |
else: | |
# Remove versioning from the package | |
pat = '(' + '|'.join(['>=', '==', '>']) + ')' | |
parts = re.split(pat, line, maxsplit=1) | |
parts = [p.strip() for p in parts] | |
info['package'] = parts[0] | |
if len(parts) > 1: | |
op, rest = parts[1:] | |
if ';' in rest: | |
# Handle platform specific dependencies | |
# http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies | |
version, platform_deps = map(str.strip, | |
rest.split(';')) | |
info['platform_deps'] = platform_deps | |
else: | |
version = rest # NOQA | |
info['version'] = (op, version) | |
yield info | |
def parse_require_file(fpath): | |
with open(fpath) as f: | |
for line in f.readlines(): | |
line = line.strip() | |
if line and not line.startswith('#'): | |
yield from parse_line(line) | |
def gen_packages_items(): | |
if exists(require_fpath): | |
for info in parse_require_file(require_fpath): | |
parts = [info['package']] | |
if with_version and 'version' in info: | |
parts.extend(info['version']) | |
if not sys.version.startswith('3.4'): | |
# apparently package_deps are broken in 3.4 | |
platform_deps = info.get('platform_deps') | |
if platform_deps is not None: | |
parts.append(';' + platform_deps) | |
item = ''.join(parts) | |
yield item | |
packages = list(gen_packages_items()) | |
return packages | |
install_requires = parse_requirements() | |
try: | |
# OpenCV installed via conda. | |
import cv2 # NOQA: F401 | |
major, minor, *rest = cv2.__version__.split('.') | |
if int(major) < 3: | |
raise RuntimeError( | |
f'OpenCV >=3 is required but {cv2.__version__} is installed') | |
except ImportError: | |
# If first not installed install second package | |
CHOOSE_INSTALL_REQUIRES = [('opencv-python-headless>=3', | |
'opencv-python>=3')] | |
for main, secondary in CHOOSE_INSTALL_REQUIRES: | |
install_requires.append(choose_requirement(main, secondary)) | |
def get_extensions(): | |
extensions = [] | |
if os.getenv('MMCV_WITH_OPS', '1') == '0': | |
return extensions | |
if EXT_TYPE == 'parrots': | |
ext_name = 'mmcv._ext' | |
from parrots.utils.build_extension import Extension | |
# new parrots op impl do not use MMCV_USE_PARROTS | |
# define_macros = [('MMCV_USE_PARROTS', None)] | |
define_macros = [] | |
include_dirs = [] | |
op_files = glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cu') +\ | |
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') +\ | |
glob.glob('./mmcv/ops/csrc/parrots/*.cpp') | |
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common')) | |
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/cuda')) | |
op_files.remove('./mmcv/ops/csrc/pytorch/cuda/iou3d_cuda.cu') | |
op_files.remove('./mmcv/ops/csrc/pytorch/cpu/bbox_overlaps_cpu.cpp') | |
op_files.remove('./mmcv/ops/csrc/pytorch/cuda/bias_act_cuda.cu') | |
cuda_args = os.getenv('MMCV_CUDA_ARGS') | |
extra_compile_args = { | |
'nvcc': [cuda_args, '-std=c++14'] if cuda_args else ['-std=c++14'], | |
'cxx': ['-std=c++14'], | |
} | |
if torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1': | |
define_macros += [('MMCV_WITH_CUDA', None)] | |
extra_compile_args['nvcc'] += [ | |
'-D__CUDA_NO_HALF_OPERATORS__', | |
'-D__CUDA_NO_HALF_CONVERSIONS__', | |
'-D__CUDA_NO_HALF2_OPERATORS__', | |
] | |
ext_ops = Extension( | |
name=ext_name, | |
sources=op_files, | |
include_dirs=include_dirs, | |
define_macros=define_macros, | |
extra_compile_args=extra_compile_args, | |
cuda=True, | |
pytorch=True) | |
extensions.append(ext_ops) | |
elif EXT_TYPE == 'pytorch': | |
ext_name = 'mmcv._ext' | |
from torch.utils.cpp_extension import CppExtension, CUDAExtension | |
# prevent ninja from using too many resources | |
try: | |
import psutil | |
num_cpu = len(psutil.Process().cpu_affinity()) | |
cpu_use = max(4, num_cpu - 1) | |
except (ModuleNotFoundError, AttributeError): | |
cpu_use = 4 | |
os.environ.setdefault('MAX_JOBS', str(cpu_use)) | |
define_macros = [] | |
# Before PyTorch1.8.0, when compiling CUDA code, `cxx` is a | |
# required key passed to PyTorch. Even if there is no flag passed | |
# to cxx, users also need to pass an empty list to PyTorch. | |
# Since PyTorch1.8.0, it has a default value so users do not need | |
# to pass an empty list anymore. | |
# More details at https://github.com/pytorch/pytorch/pull/45956 | |
extra_compile_args = {'cxx': []} | |
if platform.system() != 'Windows': | |
if parse_version(torch.__version__) <= parse_version('1.12.1'): | |
extra_compile_args['cxx'] = ['-std=c++14'] | |
else: | |
extra_compile_args['cxx'] = ['-std=c++17'] | |
else: | |
if parse_version(torch.__version__) <= parse_version('1.12.1'): | |
extra_compile_args['cxx'] = ['/std:c++14'] | |
else: | |
extra_compile_args['cxx'] = ['/std:c++17'] | |
include_dirs = [] | |
library_dirs = [] | |
libraries = [] | |
extra_objects = [] | |
extra_link_args = [] | |
is_rocm_pytorch = False | |
try: | |
from torch.utils.cpp_extension import ROCM_HOME | |
is_rocm_pytorch = True if ((torch.version.hip is not None) and | |
(ROCM_HOME is not None)) else False | |
except ImportError: | |
pass | |
if os.getenv('MMCV_WITH_DIOPI', '0') == '1': | |
import mmengine # NOQA: F401 | |
from mmengine.utils.version_utils import digit_version | |
assert digit_version(mmengine.__version__) >= digit_version( | |
'0.7.4'), f'mmengine >= 0.7.4 is required \ | |
but {mmengine.__version__} is installed' | |
print(f'Compiling {ext_name} with CPU and DIPU') | |
define_macros += [('MMCV_WITH_DIOPI', None)] | |
define_macros += [('DIOPI_ATTR_WEAK', None)] | |
op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \ | |
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') | |
extension = CppExtension | |
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common')) | |
dipu_root = os.getenv('DIPU_ROOT') | |
diopi_path = os.getenv('DIOPI_PATH') | |
dipu_path = os.getenv('DIPU_PATH') | |
vendor_include_dirs = os.getenv('VENDOR_INCLUDE_DIRS') | |
nccl_include_dirs = os.getenv('NCCL_INCLUDE_DIRS') | |
include_dirs.append(dipu_root) | |
include_dirs.append(diopi_path + '/include') | |
include_dirs.append(dipu_path + '/dist/include') | |
include_dirs.append(vendor_include_dirs) | |
if nccl_include_dirs: | |
include_dirs.append(nccl_include_dirs) | |
library_dirs += [dipu_root] | |
libraries += ['torch_dipu'] | |
elif is_rocm_pytorch or torch.cuda.is_available() or os.getenv( | |
'FORCE_CUDA', '0') == '1': | |
if is_rocm_pytorch: | |
define_macros += [('MMCV_WITH_HIP', None)] | |
define_macros += [('MMCV_WITH_CUDA', None)] | |
cuda_args = os.getenv('MMCV_CUDA_ARGS') | |
extra_compile_args['nvcc'] = [cuda_args] if cuda_args else [] | |
op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \ | |
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \ | |
glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cu') + \ | |
glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cpp') | |
extension = CUDAExtension | |
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/pytorch')) | |
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common')) | |
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/cuda')) | |
elif (hasattr(torch, 'is_mlu_available') and | |
torch.is_mlu_available()) or \ | |
os.getenv('FORCE_MLU', '0') == '1': | |
from torch_mlu.utils.cpp_extension import MLUExtension | |
def get_mluops_version(file_path): | |
with open(file_path) as f: | |
for line in f: | |
if re.search('MLUOP_MAJOR', line): | |
major = line.strip().split(' ')[2] | |
if re.search('MLUOP_MINOR', line): | |
minor = line.strip().split(' ')[2] | |
if re.search('MLUOP_PATCHLEVEL', line): | |
patchlevel = line.strip().split(' ')[2] | |
mluops_version = f'v{major}.{minor}.{patchlevel}' | |
return mluops_version | |
mmcv_mluops_version = get_mluops_version( | |
'./mmcv/ops/csrc/pytorch/mlu/mlu_common_helper.h') | |
mlu_ops_path = os.getenv('MMCV_MLU_OPS_PATH') | |
if mlu_ops_path: | |
exists_mluops_version = get_mluops_version( | |
mlu_ops_path + '/bangc-ops/mlu_op.h') | |
if exists_mluops_version != mmcv_mluops_version: | |
print('the version of mlu-ops provided is %s,' | |
' while %s is needed.' % | |
(exists_mluops_version, mmcv_mluops_version)) | |
exit() | |
try: | |
if os.path.exists('mlu-ops'): | |
if os.path.islink('mlu-ops'): | |
os.remove('mlu-ops') | |
os.symlink(mlu_ops_path, 'mlu-ops') | |
elif os.path.abspath('mlu-ops') != mlu_ops_path: | |
os.symlink(mlu_ops_path, 'mlu-ops') | |
else: | |
os.symlink(mlu_ops_path, 'mlu-ops') | |
except Exception: | |
raise FileExistsError( | |
'mlu-ops already exists, please move it out,' | |
'or rename or remove it.') | |
else: | |
if not os.path.exists('mlu-ops'): | |
import requests | |
mluops_url = 'https://github.com/Cambricon/mlu-ops/' + \ | |
'archive/refs/tags/' + mmcv_mluops_version + '.zip' | |
req = requests.get(mluops_url) | |
with open('./mlu-ops.zip', 'wb') as f: | |
try: | |
f.write(req.content) | |
except Exception: | |
raise ImportError('failed to download mlu-ops') | |
from zipfile import BadZipFile, ZipFile | |
with ZipFile('./mlu-ops.zip', 'r') as archive: | |
try: | |
archive.extractall() | |
dir_name = archive.namelist()[0].split('/')[0] | |
os.rename(dir_name, 'mlu-ops') | |
except BadZipFile: | |
print('invalid mlu-ops.zip file') | |
else: | |
exists_mluops_version = get_mluops_version( | |
'./mlu-ops/bangc-ops/mlu_op.h') | |
if exists_mluops_version != mmcv_mluops_version: | |
print('the version of provided mlu-ops is %s,' | |
' while %s is needed.' % | |
(exists_mluops_version, mmcv_mluops_version)) | |
exit() | |
define_macros += [('MMCV_WITH_MLU', None)] | |
mlu_args = os.getenv('MMCV_MLU_ARGS', '-DNDEBUG ') | |
mluops_includes = [] | |
mluops_includes.append('-I' + | |
os.path.abspath('./mlu-ops/bangc-ops')) | |
mluops_includes.append( | |
'-I' + os.path.abspath('./mlu-ops/bangc-ops/kernels')) | |
extra_compile_args['cncc'] = [mlu_args] + \ | |
mluops_includes if mlu_args else mluops_includes | |
extra_compile_args['cxx'] += ['-fno-gnu-unique'] | |
op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \ | |
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \ | |
glob.glob('./mmcv/ops/csrc/pytorch/mlu/*.cpp') + \ | |
glob.glob('./mmcv/ops/csrc/common/mlu/*.mlu') + \ | |
glob.glob( | |
'./mlu-ops/bangc-ops/core/**/*.cpp', recursive=True) + \ | |
glob.glob( | |
'./mlu-ops/bangc-ops/kernels/**/*.cpp', recursive=True) + \ | |
glob.glob( | |
'./mlu-ops/bangc-ops/kernels/**/*.mlu', recursive=True) | |
extra_link_args = [ | |
'-Wl,--whole-archive', | |
'./mlu-ops/bangc-ops/kernels/kernel_wrapper/lib/libextops.a', | |
'-Wl,--no-whole-archive' | |
] | |
extension = MLUExtension | |
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common')) | |
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/mlu')) | |
include_dirs.append(os.path.abspath('./mlu-ops/bangc-ops')) | |
elif (hasattr(torch.backends, 'mps') | |
and torch.backends.mps.is_available()) or os.getenv( | |
'FORCE_MPS', '0') == '1': | |
# objc compiler support | |
from distutils.unixccompiler import UnixCCompiler | |
if '.mm' not in UnixCCompiler.src_extensions: | |
UnixCCompiler.src_extensions.append('.mm') | |
UnixCCompiler.language_map['.mm'] = 'objc' | |
define_macros += [('MMCV_WITH_MPS', None)] | |
extra_compile_args = {} | |
extra_compile_args['cxx'] = ['-Wall', '-std=c++17'] | |
extra_compile_args['cxx'] += [ | |
'-framework', 'Metal', '-framework', 'Foundation' | |
] | |
extra_compile_args['cxx'] += ['-ObjC++'] | |
# src | |
op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \ | |
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \ | |
glob.glob('./mmcv/ops/csrc/common/mps/*.mm') + \ | |
glob.glob('./mmcv/ops/csrc/pytorch/mps/*.mm') | |
extension = CppExtension | |
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common')) | |
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/mps')) | |
elif (os.getenv('FORCE_NPU', '0') == '1'): | |
print(f'Compiling {ext_name} only with CPU and NPU') | |
try: | |
from torch_npu.utils.cpp_extension import NpuExtension | |
define_macros += [('MMCV_WITH_NPU', None)] | |
extension = NpuExtension | |
if parse_version(torch.__version__) <= parse_version('2.0.0'): | |
define_macros += [('MMCV_WITH_XLA', None)] | |
if parse_version(torch.__version__) > parse_version('2.0.0'): | |
define_macros += [('MMCV_WITH_KPRIVATE', None)] | |
except Exception: | |
raise ImportError('can not find any torch_npu') | |
# src | |
op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \ | |
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \ | |
glob.glob('./mmcv/ops/csrc/common/npu/*.cpp') + \ | |
glob.glob('./mmcv/ops/csrc/pytorch/npu/*.cpp') | |
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common')) | |
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/npu')) | |
else: | |
print(f'Compiling {ext_name} only with CPU') | |
op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \ | |
glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') | |
extension = CppExtension | |
include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common')) | |
# Since the PR (https://github.com/open-mmlab/mmcv/pull/1463) uses | |
# c++14 features, the argument ['std=c++14'] must be added here. | |
# However, in the windows environment, some standard libraries | |
# will depend on c++17 or higher. In fact, for the windows | |
# environment, the compiler will choose the appropriate compiler | |
# to compile those cpp files, so there is no need to add the | |
# argument | |
if 'nvcc' in extra_compile_args and platform.system() != 'Windows': | |
if parse_version(torch.__version__) <= parse_version('1.12.1'): | |
extra_compile_args['nvcc'] += ['-std=c++14'] | |
else: | |
extra_compile_args['nvcc'] += ['-std=c++17'] | |
ext_ops = extension( | |
name=ext_name, | |
sources=op_files, | |
include_dirs=include_dirs, | |
define_macros=define_macros, | |
extra_objects=extra_objects, | |
extra_compile_args=extra_compile_args, | |
library_dirs=library_dirs, | |
libraries=libraries, | |
extra_link_args=extra_link_args) | |
extensions.append(ext_ops) | |
return extensions | |
setup( | |
name='sapiens_cv', | |
version=get_version(), | |
description='Sapiens: Foundation for Human Vision Models', | |
keywords='computer vision', | |
packages=find_packages(), | |
include_package_data=True, | |
classifiers=[ | |
'Development Status :: 4 - Beta', | |
'License :: OSI Approved :: Apache Software License', | |
'Operating System :: OS Independent', | |
'Programming Language :: Python :: 3', | |
'Programming Language :: Python :: 3.7', | |
'Programming Language :: Python :: 3.8', | |
'Programming Language :: Python :: 3.9', | |
'Programming Language :: Python :: 3.10', | |
'Topic :: Utilities', | |
], | |
url='', | |
author='Meta Reality Labs', | |
author_email='', | |
install_requires=install_requires, | |
extras_require={ | |
'all': parse_requirements('requirements.txt'), | |
'tests': parse_requirements('requirements/test.txt'), | |
'build': parse_requirements('requirements/build.txt'), | |
'optional': parse_requirements('requirements/optional.txt'), | |
}, | |
python_requires='>=3.7', | |
ext_modules=get_extensions(), | |
cmdclass=cmd_class, | |
zip_safe=False) | |