Spaces:
Running
on
Zero
Running
on
Zero
Removed 4bit
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ from transformers import (
|
|
4 |
AutoModelForCausalLM,
|
5 |
AutoTokenizer,
|
6 |
TextIteratorStreamer,
|
7 |
-
BitsAndBytesConfig,
|
8 |
)
|
9 |
import os
|
10 |
from threading import Thread
|
@@ -13,12 +12,9 @@ import time
|
|
13 |
|
14 |
token = os.environ["HF_TOKEN"]
|
15 |
|
16 |
-
quantization_config = BitsAndBytesConfig(
|
17 |
-
load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16
|
18 |
-
)
|
19 |
|
20 |
model = AutoModelForCausalLM.from_pretrained(
|
21 |
-
"microsoft/Phi-3-mini-128k-instruct",
|
22 |
)
|
23 |
tok = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct", token=token)
|
24 |
terminators = [
|
@@ -32,13 +28,12 @@ else:
|
|
32 |
device = torch.device("cpu")
|
33 |
print("Using CPU")
|
34 |
|
35 |
-
|
36 |
# Dispatch Errors
|
37 |
|
38 |
|
39 |
@spaces.GPU(duration=60)
|
40 |
def chat(message, history, temperature,do_sample, max_tokens):
|
41 |
-
start_time = time.time()
|
42 |
chat = []
|
43 |
for item in history:
|
44 |
chat.append({"role": "user", "content": item[0]})
|
@@ -66,19 +61,11 @@ def chat(message, history, temperature,do_sample, max_tokens):
|
|
66 |
t.start()
|
67 |
|
68 |
partial_text = ""
|
69 |
-
first_token_time = None
|
70 |
for new_text in streamer:
|
71 |
-
if not first_token_time:
|
72 |
-
first_token_time = time.time() - start_time
|
73 |
partial_text += new_text
|
74 |
yield partial_text
|
75 |
|
76 |
-
|
77 |
-
tokens = len(tok.tokenize(partial_text))
|
78 |
-
tokens_per_second = tokens / total_time if total_time > 0 else 0
|
79 |
-
|
80 |
-
timing_info = f"\n\nTime taken to first token: {first_token_time:.2f} seconds\nTokens per second: {tokens_per_second:.2f}"
|
81 |
-
yield partial_text + timing_info
|
82 |
|
83 |
|
84 |
demo = gr.ChatInterface(
|
@@ -104,6 +91,6 @@ demo = gr.ChatInterface(
|
|
104 |
],
|
105 |
stop_btn="Stop Generation",
|
106 |
title="Chat With LLMs",
|
107 |
-
description="Now Running [microsoft/Phi-3-mini-128k-instruct](https://huggingface.com/microsoft/Phi-3-mini-128k-instruct)
|
108 |
)
|
109 |
demo.launch()
|
|
|
4 |
AutoModelForCausalLM,
|
5 |
AutoTokenizer,
|
6 |
TextIteratorStreamer,
|
|
|
7 |
)
|
8 |
import os
|
9 |
from threading import Thread
|
|
|
12 |
|
13 |
token = os.environ["HF_TOKEN"]
|
14 |
|
|
|
|
|
|
|
15 |
|
16 |
model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
"microsoft/Phi-3-mini-128k-instruct", token=token,trust_remote_code=True
|
18 |
)
|
19 |
tok = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct", token=token)
|
20 |
terminators = [
|
|
|
28 |
device = torch.device("cpu")
|
29 |
print("Using CPU")
|
30 |
|
31 |
+
model = model.to(device)
|
32 |
# Dispatch Errors
|
33 |
|
34 |
|
35 |
@spaces.GPU(duration=60)
|
36 |
def chat(message, history, temperature,do_sample, max_tokens):
|
|
|
37 |
chat = []
|
38 |
for item in history:
|
39 |
chat.append({"role": "user", "content": item[0]})
|
|
|
61 |
t.start()
|
62 |
|
63 |
partial_text = ""
|
|
|
64 |
for new_text in streamer:
|
|
|
|
|
65 |
partial_text += new_text
|
66 |
yield partial_text
|
67 |
|
68 |
+
yield partial_text
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
demo = gr.ChatInterface(
|
|
|
91 |
],
|
92 |
stop_btn="Stop Generation",
|
93 |
title="Chat With LLMs",
|
94 |
+
description="Now Running [microsoft/Phi-3-mini-128k-instruct](https://huggingface.com/microsoft/Phi-3-mini-128k-instruct)"
|
95 |
)
|
96 |
demo.launch()
|