Spaces:
Running
Running
auth
Browse files
app.py
CHANGED
@@ -4,11 +4,8 @@ import gradio as gr
|
|
4 |
from tools import create_agent
|
5 |
from langchain_core.messages import RemoveMessage
|
6 |
from langchain_core.messages import trim_messages
|
7 |
-
load_dotenv()
|
8 |
|
9 |
# Global params
|
10 |
-
AUTH_ID = os.environ.get("AUTH_ID")
|
11 |
-
AUTH_PASS = os.environ.get("AUTH_PASS")
|
12 |
AGENT = create_agent()
|
13 |
theme = gr.themes.Default(primary_hue="red", secondary_hue="red")
|
14 |
default_msg = "Bonjour ! Je suis là pour répondre à vos questions sur l'actuariat. Comment puis-je vous aider aujourd'hui ?"
|
@@ -83,4 +80,7 @@ with gr.Blocks(theme=theme, js=js_func, title="Dataltist", fill_height=True) as
|
|
83 |
iface.unload(delete_agent)
|
84 |
|
85 |
if __name__ == "__main__":
|
|
|
|
|
|
|
86 |
iface.launch(auth=(AUTH_ID, AUTH_PASS))
|
|
|
4 |
from tools import create_agent
|
5 |
from langchain_core.messages import RemoveMessage
|
6 |
from langchain_core.messages import trim_messages
|
|
|
7 |
|
8 |
# Global params
|
|
|
|
|
9 |
AGENT = create_agent()
|
10 |
theme = gr.themes.Default(primary_hue="red", secondary_hue="red")
|
11 |
default_msg = "Bonjour ! Je suis là pour répondre à vos questions sur l'actuariat. Comment puis-je vous aider aujourd'hui ?"
|
|
|
80 |
iface.unload(delete_agent)
|
81 |
|
82 |
if __name__ == "__main__":
|
83 |
+
load_dotenv()
|
84 |
+
AUTH_ID = os.environ.get("AUTH_ID")
|
85 |
+
AUTH_PASS = os.environ.get("AUTH_PASS")
|
86 |
iface.launch(auth=(AUTH_ID, AUTH_PASS))
|
tools.py
CHANGED
@@ -41,13 +41,13 @@ memoires_ds = load_dataset("eliot-hub/memoires_vec_800", split="data", token=HF_
|
|
41 |
batched_ds = memoires_ds.batch(batch_size=41000)
|
42 |
client = chromadb.Client()
|
43 |
collection = client.get_or_create_collection(name="embeddings_mxbai")
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
print(f"Collection complete: {collection.count()}")
|
52 |
del memoires_ds, batched_ds
|
53 |
|
|
|
41 |
batched_ds = memoires_ds.batch(batch_size=41000)
|
42 |
client = chromadb.Client()
|
43 |
collection = client.get_or_create_collection(name="embeddings_mxbai")
|
44 |
+
for batch in tqdm(batched_ds, desc="Processing dataset batches"):
|
45 |
+
collection.add(
|
46 |
+
ids=batch["id"],
|
47 |
+
metadatas=batch["metadata"],
|
48 |
+
documents=batch["document"],
|
49 |
+
embeddings=batch["embedding"],
|
50 |
+
)
|
51 |
print(f"Collection complete: {collection.count()}")
|
52 |
del memoires_ds, batched_ds
|
53 |
|