Spaces:
Sleeping
Sleeping
clean
Browse files- README.md +1 -0
- hf_to_chroma_ds.py +0 -154
README.md
CHANGED
@@ -7,6 +7,7 @@ sdk: gradio
|
|
7 |
sdk_version: 4.44.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
7 |
sdk_version: 4.44.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
startup_duration_timeout: 1h
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
hf_to_chroma_ds.py
DELETED
@@ -1,154 +0,0 @@
|
|
1 |
-
# imports
|
2 |
-
from abc import ABC, abstractmethod
|
3 |
-
from typing import Optional, Union, Sequence, Dict, Mapping, List, Any
|
4 |
-
from typing_extensions import TypedDict
|
5 |
-
from chroma_datasets.types import AddEmbedding, Datapoint
|
6 |
-
from chroma_datasets.utils import load_huggingface_dataset, to_chroma_schema
|
7 |
-
from chromadb.utils import embedding_functions
|
8 |
-
import os
|
9 |
-
from dotenv import load_dotenv
|
10 |
-
|
11 |
-
HF_API_KEY = os.environ.get("HF_API_KEY")
|
12 |
-
|
13 |
-
ef_instruction_dict = {
|
14 |
-
"HuggingFaceEmbeddingFunction": """
|
15 |
-
from chromadb.utils import embedding_functions
|
16 |
-
hf_ef = embedding_functions.huggingface_embedding_function.HuggingFaceEmbeddingFunction(api_key={HF_API_KEY}, model_name="mixedbread-ai/mxbai-embed-large-v1")
|
17 |
-
|
18 |
-
"""
|
19 |
-
}
|
20 |
-
|
21 |
-
class Dataset(ABC):
|
22 |
-
"""
|
23 |
-
Abstract class for a dataset
|
24 |
-
|
25 |
-
All datasets should inherit from this class
|
26 |
-
|
27 |
-
Properties:
|
28 |
-
hf_data: the raw data from huggingface
|
29 |
-
embedding_function: the embedding function used to generate the embeddings
|
30 |
-
embeddingFunctionInstructions: tell the user how to set up the embedding function
|
31 |
-
"""
|
32 |
-
hf_dataset_name: str
|
33 |
-
hf_data: Any
|
34 |
-
embedding_function: str
|
35 |
-
embedding_function_instructions: str
|
36 |
-
|
37 |
-
@classmethod
|
38 |
-
def load_data(cls):
|
39 |
-
cls.hf_data = load_huggingface_dataset(
|
40 |
-
cls.hf_dataset_name,
|
41 |
-
split_name="data"
|
42 |
-
)
|
43 |
-
|
44 |
-
@classmethod
|
45 |
-
def raw_text(cls) -> str:
|
46 |
-
if cls.hf_data is None:
|
47 |
-
cls.load_data()
|
48 |
-
return "\n".join(cls.hf_data["document"])
|
49 |
-
|
50 |
-
@classmethod
|
51 |
-
def chunked(cls) -> List[Datapoint]:
|
52 |
-
if cls.hf_data is None:
|
53 |
-
cls.load_data()
|
54 |
-
return cls.hf_data
|
55 |
-
|
56 |
-
@classmethod
|
57 |
-
def to_chroma(cls) -> AddEmbedding:
|
58 |
-
return to_chroma_schema(cls.chunked())
|
59 |
-
|
60 |
-
|
61 |
-
class Memoires_DS(Dataset):
|
62 |
-
"""
|
63 |
-
"""
|
64 |
-
hf_data = None
|
65 |
-
hf_dataset_name = "eliot-hub/memoires_vec_800"
|
66 |
-
embedding_function = "HuggingFaceEmbeddingFunction"
|
67 |
-
embedding_function_instructions = ef_instruction_dict[embedding_function]
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
def import_into_chroma(chroma_client, dataset, collection_name=None, embedding_function=None, batch_size=5000):
|
73 |
-
"""
|
74 |
-
Imports a dataset into Chroma in batches.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
chroma_client (ChromaClient): The ChromaClient to use.
|
78 |
-
collection_name (str): The name of the collection to load the dataset into.
|
79 |
-
dataset (AddEmbedding): The dataset to load.
|
80 |
-
embedding_function (Optional[Callable[[str], np.ndarray]]): A function that takes a string and returns an embedding.
|
81 |
-
batch_size (int): The size of each batch to load.
|
82 |
-
"""
|
83 |
-
# if chromadb is not installed, raise an error
|
84 |
-
try:
|
85 |
-
import chromadb
|
86 |
-
from chromadb.utils import embedding_functions
|
87 |
-
except ImportError:
|
88 |
-
raise ImportError("Please install chromadb to use this function. `pip install chromadb`")
|
89 |
-
|
90 |
-
ef = None
|
91 |
-
|
92 |
-
if dataset.embedding_function is not None:
|
93 |
-
if embedding_function is None:
|
94 |
-
error_msg = "See documentation"
|
95 |
-
if dataset.embedding_function_instructions is not None:
|
96 |
-
error_msg = dataset.embedding_function_instructions
|
97 |
-
|
98 |
-
raise ValueError(f"""
|
99 |
-
Dataset requires embedding function: {dataset.embedding_function}.
|
100 |
-
{error_msg}
|
101 |
-
""")
|
102 |
-
|
103 |
-
if embedding_function.__class__.__name__ != dataset.embedding_function:
|
104 |
-
raise ValueError(f"Please use {dataset.embedding_function} as the embedding function for this dataset. You passed {embedding_function.__class__.__name__}")
|
105 |
-
|
106 |
-
if embedding_function is not None:
|
107 |
-
ef = embedding_function
|
108 |
-
|
109 |
-
# if collection_name is None, get the name from the dataset type
|
110 |
-
if collection_name is None:
|
111 |
-
collection_name = dataset.__name__
|
112 |
-
|
113 |
-
if ef is None:
|
114 |
-
ef = embedding_functions.DefaultEmbeddingFunction()
|
115 |
-
|
116 |
-
print("########### Init collection ###########")
|
117 |
-
collection = chroma_client.create_collection(
|
118 |
-
collection_name,
|
119 |
-
embedding_function=ef
|
120 |
-
)
|
121 |
-
|
122 |
-
# Retrieve the mapped data
|
123 |
-
print("########### Init to_chroma ###########")
|
124 |
-
mapped_data = dataset.to_chroma()
|
125 |
-
del dataset
|
126 |
-
|
127 |
-
# Split the data into batches and add them to the collection
|
128 |
-
def chunk_data(data, size):
|
129 |
-
"""Helper function to split data into batches."""
|
130 |
-
for i in range(0, len(data), size):
|
131 |
-
yield data[i:i+size]
|
132 |
-
|
133 |
-
print("########### Chunking ###########")
|
134 |
-
ids_batches = list(chunk_data(mapped_data["ids"], batch_size))
|
135 |
-
metadatas_batches = list(chunk_data(mapped_data["metadatas"], batch_size))
|
136 |
-
documents_batches = list(chunk_data(mapped_data["documents"], batch_size))
|
137 |
-
embeddings_batches = list(chunk_data(mapped_data["embeddings"], batch_size))
|
138 |
-
|
139 |
-
total_docs = len(mapped_data["ids"])
|
140 |
-
|
141 |
-
print("########### Iterating batches ###########")
|
142 |
-
for i, (ids, metadatas, documents, embeddings) in enumerate(zip(ids_batches, metadatas_batches, documents_batches, embeddings_batches)):
|
143 |
-
collection.add(
|
144 |
-
ids=ids,
|
145 |
-
metadatas=metadatas,
|
146 |
-
documents=documents,
|
147 |
-
embeddings=embeddings,
|
148 |
-
)
|
149 |
-
print(f"Batch {i+1}/{len(ids_batches)}: Loaded {len(ids)} documents.")
|
150 |
-
|
151 |
-
print(f"Successfully loaded {total_docs} documents into the collection named: {collection_name}")
|
152 |
-
|
153 |
-
|
154 |
-
return collection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|