File size: 5,990 Bytes
42f87c6
1bea5ac
42f87c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bea5ac
 
42f87c6
b7be7da
1bea5ac
 
42f87c6
 
 
 
 
 
 
 
543c1bb
9c5d425
42f87c6
 
 
 
 
1bea5ac
 
9c5d425
 
 
42f87c6
 
 
b7be7da
42f87c6
 
1bea5ac
 
 
 
 
 
b7be7da
42f87c6
1bea5ac
42f87c6
1bea5ac
 
42f87c6
9e84bb1
1bea5ac
 
 
 
 
42f87c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bea5ac
42f87c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
from langchain_chroma import Chroma
from langchain.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain, create_history_aware_retriever
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import MessagesPlaceholder
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
import torch
import chromadb
from typing import List
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.vectorstores import VectorStoreRetriever

from langchain_openai import ChatOpenAI
from mixedbread_ai.client import MixedbreadAI

from langchain.callbacks.tracers import ConsoleCallbackHandler
from langchain_huggingface import HuggingFaceEmbeddings 
import os
# from chroma_datasets.utils import import_into_chroma
from hf_to_chroma_ds import import_into_chroma
from datasets import load_dataset
from chromadb.utils import embedding_functions
from hf_to_chroma_ds import Memoires_DS
from dotenv import load_dotenv

# Global params
CHROMA_PATH = "chromadb_mem10_mxbai_800_complete"
MODEL_EMB = "mxbai-embed-large"
MODEL_RRK = "mixedbread-ai/mxbai-rerank-large-v1"
LLM_NAME = "gpt-4o-mini"
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
MXBAI_API_KEY = os.environ.get("MXBAI_API_KEY")
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_API_KEY = os.environ.get("HF_API_KEY")

# Load the reranker model
device = "cuda:0" if torch.cuda.is_available() else "cpu"
mxbai_client = MixedbreadAI(api_key=MXBAI_API_KEY)
model_emb = "mixedbread-ai/mxbai-embed-large-v1"  

huggingface_ef = embedding_functions.huggingface_embedding_function.HuggingFaceEmbeddingFunction(
    api_key=HF_API_KEY,
    model_name=model_emb
)

# Set up ChromaDB
client = chromadb.Client()
# memoires_ds = load_dataset("eliot-hub/memoires_vec_800", split="data", token=HF_TOKEN)
# client = chromadb.PersistentClient(path=os.path.join(os.path.abspath(os.getcwd()), "01_Notebooks", "RAG-ollama", "chatbot_actuariat_APP", CHROMA_PATH))

# memoires_ds = Dataset(
#     hf_data = None,
#     hf_dataset_name = "eliot-hub/memoires_vec_800",
#     embedding_function = huggingface_ef,
#     embedding_function_instructions = None
#     )


collection = import_into_chroma(
    chroma_client=client,
    dataset=Memoires_DS,
    embedding_function=huggingface_ef #Memoires_DS.embedding_function
    )

db = Chroma(
    client=client,
    collection_name=f"embeddings_mxbai",
    embedding_function = HuggingFaceEmbeddings(model_name=model_emb) 
)


# Reranker class
class Reranker(BaseRetriever):
    retriever: VectorStoreRetriever
    # model: CrossEncoder
    k: int

    def _get_relevant_documents(
        self, query: str, *, run_manager: CallbackManagerForRetrieverRun
    ) -> List[Document]:
        docs = self.retriever.invoke(query)
        results = mxbai_client.reranking(model="mixedbread-ai/mxbai-rerank-large-v1", query=query, input=[doc.page_content for doc in docs], return_input=True, top_k=self.k)
        return [Document(page_content=res.input) for res in results.data]

# Set up reranker + LLM
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 25})
reranker = Reranker(retriever=retriever, k=4)  #Reranker(retriever=retriever, model=model, k=4)
llm = ChatOpenAI(model=LLM_NAME, verbose=True) #, api_key=OPENAI_API_KEY, )

# Set up the contextualize question prompt
contextualize_q_system_prompt = (
    "Compte tenu de l'historique des discussions et de la dernière question de l'utilisateur "
    "qui peut faire référence à un contexte dans l'historique du chat, "
    "formuler une question autonome qui peut être comprise "
    "sans l'historique du chat. Ne répondez PAS à la question, "
    "juste la reformuler si nécessaire et sinon la renvoyer telle quelle."
)

contextualize_q_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", contextualize_q_system_prompt),
        MessagesPlaceholder("chat_history"),
        ("human", "{input}"),
    ]
)

# Create the history-aware retriever
history_aware_retriever = create_history_aware_retriever(
    llm, reranker, contextualize_q_prompt
)

# Set up the QA prompt
system_prompt = (
    "Réponds à la question en te basant uniquement sur le contexte suivant: \n\n {context}"
)
qa_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", system_prompt),
        MessagesPlaceholder("chat_history"),
        ("human", "{input}"),
    ]
)

# Create the question-answer chain
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)

# Set up the conversation history
store = {}

def get_session_history(session_id: str) -> ChatMessageHistory:
    if session_id not in store:
        store[session_id] = ChatMessageHistory()
    return store[session_id]

conversational_rag_chain = RunnableWithMessageHistory(
    rag_chain,
    get_session_history,
    input_messages_key="input",
    history_messages_key="chat_history",
    output_messages_key="answer",
)

# Gradio interface
def chatbot(message, history):
    session_id = "gradio_session"
    response = conversational_rag_chain.invoke(
        {"input": message},
        config={
            "configurable": {"session_id": session_id},
            "callbacks": [ConsoleCallbackHandler()]
        },
    )["answer"]
    return response

iface = gr.ChatInterface(
    chatbot,
    title="Assurance Chatbot",
    description="Posez vos questions sur l'assurance",
    theme="soft",
    examples=[
        "Qu'est-ce que l'assurance multirisque habitation ?",
        "Qu'est-ce que la garantie DTA ?",
    ],
    retry_btn=None,
    undo_btn=None,
    clear_btn="Effacer la conversation",
)

if __name__ == "__main__":
    iface.launch()  # share=True