Spaces:
Sleeping
Sleeping
File size: 5,990 Bytes
42f87c6 1bea5ac 42f87c6 1bea5ac 42f87c6 b7be7da 1bea5ac 42f87c6 543c1bb 9c5d425 42f87c6 1bea5ac 9c5d425 42f87c6 b7be7da 42f87c6 1bea5ac b7be7da 42f87c6 1bea5ac 42f87c6 1bea5ac 42f87c6 9e84bb1 1bea5ac 42f87c6 1bea5ac 42f87c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import gradio as gr
from langchain_chroma import Chroma
from langchain.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain, create_history_aware_retriever
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import MessagesPlaceholder
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
import torch
import chromadb
from typing import List
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.vectorstores import VectorStoreRetriever
from langchain_openai import ChatOpenAI
from mixedbread_ai.client import MixedbreadAI
from langchain.callbacks.tracers import ConsoleCallbackHandler
from langchain_huggingface import HuggingFaceEmbeddings
import os
# from chroma_datasets.utils import import_into_chroma
from hf_to_chroma_ds import import_into_chroma
from datasets import load_dataset
from chromadb.utils import embedding_functions
from hf_to_chroma_ds import Memoires_DS
from dotenv import load_dotenv
# Global params
CHROMA_PATH = "chromadb_mem10_mxbai_800_complete"
MODEL_EMB = "mxbai-embed-large"
MODEL_RRK = "mixedbread-ai/mxbai-rerank-large-v1"
LLM_NAME = "gpt-4o-mini"
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
MXBAI_API_KEY = os.environ.get("MXBAI_API_KEY")
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_API_KEY = os.environ.get("HF_API_KEY")
# Load the reranker model
device = "cuda:0" if torch.cuda.is_available() else "cpu"
mxbai_client = MixedbreadAI(api_key=MXBAI_API_KEY)
model_emb = "mixedbread-ai/mxbai-embed-large-v1"
huggingface_ef = embedding_functions.huggingface_embedding_function.HuggingFaceEmbeddingFunction(
api_key=HF_API_KEY,
model_name=model_emb
)
# Set up ChromaDB
client = chromadb.Client()
# memoires_ds = load_dataset("eliot-hub/memoires_vec_800", split="data", token=HF_TOKEN)
# client = chromadb.PersistentClient(path=os.path.join(os.path.abspath(os.getcwd()), "01_Notebooks", "RAG-ollama", "chatbot_actuariat_APP", CHROMA_PATH))
# memoires_ds = Dataset(
# hf_data = None,
# hf_dataset_name = "eliot-hub/memoires_vec_800",
# embedding_function = huggingface_ef,
# embedding_function_instructions = None
# )
collection = import_into_chroma(
chroma_client=client,
dataset=Memoires_DS,
embedding_function=huggingface_ef #Memoires_DS.embedding_function
)
db = Chroma(
client=client,
collection_name=f"embeddings_mxbai",
embedding_function = HuggingFaceEmbeddings(model_name=model_emb)
)
# Reranker class
class Reranker(BaseRetriever):
retriever: VectorStoreRetriever
# model: CrossEncoder
k: int
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
docs = self.retriever.invoke(query)
results = mxbai_client.reranking(model="mixedbread-ai/mxbai-rerank-large-v1", query=query, input=[doc.page_content for doc in docs], return_input=True, top_k=self.k)
return [Document(page_content=res.input) for res in results.data]
# Set up reranker + LLM
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 25})
reranker = Reranker(retriever=retriever, k=4) #Reranker(retriever=retriever, model=model, k=4)
llm = ChatOpenAI(model=LLM_NAME, verbose=True) #, api_key=OPENAI_API_KEY, )
# Set up the contextualize question prompt
contextualize_q_system_prompt = (
"Compte tenu de l'historique des discussions et de la dernière question de l'utilisateur "
"qui peut faire référence à un contexte dans l'historique du chat, "
"formuler une question autonome qui peut être comprise "
"sans l'historique du chat. Ne répondez PAS à la question, "
"juste la reformuler si nécessaire et sinon la renvoyer telle quelle."
)
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
# Create the history-aware retriever
history_aware_retriever = create_history_aware_retriever(
llm, reranker, contextualize_q_prompt
)
# Set up the QA prompt
system_prompt = (
"Réponds à la question en te basant uniquement sur le contexte suivant: \n\n {context}"
)
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
# Create the question-answer chain
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
# Set up the conversation history
store = {}
def get_session_history(session_id: str) -> ChatMessageHistory:
if session_id not in store:
store[session_id] = ChatMessageHistory()
return store[session_id]
conversational_rag_chain = RunnableWithMessageHistory(
rag_chain,
get_session_history,
input_messages_key="input",
history_messages_key="chat_history",
output_messages_key="answer",
)
# Gradio interface
def chatbot(message, history):
session_id = "gradio_session"
response = conversational_rag_chain.invoke(
{"input": message},
config={
"configurable": {"session_id": session_id},
"callbacks": [ConsoleCallbackHandler()]
},
)["answer"]
return response
iface = gr.ChatInterface(
chatbot,
title="Assurance Chatbot",
description="Posez vos questions sur l'assurance",
theme="soft",
examples=[
"Qu'est-ce que l'assurance multirisque habitation ?",
"Qu'est-ce que la garantie DTA ?",
],
retry_btn=None,
undo_btn=None,
clear_btn="Effacer la conversation",
)
if __name__ == "__main__":
iface.launch() # share=True |