import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from peft import AutoPeftModelForCausalLM DESCRIPTION = """\ # Llama 3.2 3B Instruct Llama 3.2 3B is Meta's latest iteration of open LLMs. This is a demo of [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co./meta-llama/Llama-3.2-3B-Instruct), fine-tuned for instruction following. For more details, please check [our post](https://huggingface.co./blog/llama32). """ MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) HF_TOKEN = os.getenv("HF_TOKEN") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_name = "ehristoforu/BigFalcon3-from10B" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained(model_name) #peft_model = AutoPeftModelForCausalLM.from_pretrained("ehristoforu/think-lora-qwen-r64") #merged_model = peft_model.merge_and_unload() #merged_model.save_pretrained("./coolqwen") #model.save_pretrained("./coolqwen") #tokenizer.save_pretrained("./coolqwen") ''' from huggingface_hub import HfApi api = HfApi() api.upload_folder( folder_path="./coolqwen", repo_id="ehristoforu/Falcon3-with-lora-think-7b-it", repo_type="model", token=HF_TOKEN, ) ''' @spaces.GPU(duration=60) def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] for user, assistant in chat_history: conversation.extend( [ {"role": "user", "content": user}, {"role": "assistant", "content": assistant}, ] ) conversation.append({"role": "user", "content": message}) formatted = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) inputs = tokenizer(formatted, return_tensors="pt", padding=True) #if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: # input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] # gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") inputs = inputs.to(model.device) attention_mask = inputs["attention_mask"] streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": inputs["input_ids"]}, streamer=streamer, max_new_tokens=max_new_tokens, #eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, attention_mask=attention_mask, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.0, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["Hello there! How are you doing?"], ["Can you explain briefly to me what is the Python programming language?"], ["Explain the plot of Cinderella in a sentence."], ["How many hours does it take a man to eat a Helicopter?"], ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], ], cache_examples=False, ) with gr.Blocks(css="style.css", fill_height=True) as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()