File size: 4,879 Bytes
8c029ff
 
 
 
 
 
 
d7ecc84
237a953
8c029ff
 
9147ca6
8c029ff
9147ca6
 
 
8c029ff
 
 
 
 
237a953
8c029ff
 
1206956
237a953
8c029ff
237a953
e45a115
 
8c029ff
fd91d6d
237a953
de8a18e
 
 
411e698
de8a18e
 
fd91d6d
237a953
fd91d6d
 
 
 
 
 
411e698
fd91d6d
 
 
de8a18e
fd91d6d
73fa276
8c029ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0975580
 
 
 
 
 
 
8c029ff
 
0975580
8c029ff
 
0975580
08ff14d
 
8c029ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73fa276
8c029ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c5913d
8c029ff
 
 
 
 
 
 
 
fd91d6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from peft import AutoPeftModelForCausalLM

DESCRIPTION = """\
# Llama 3.2 3B Instruct

Llama 3.2 3B is Meta's latest iteration of open LLMs.
This is a demo of [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co./meta-llama/Llama-3.2-3B-Instruct), fine-tuned for instruction following.
For more details, please check [our post](https://huggingface.co./blog/llama32).
"""

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
HF_TOKEN = os.getenv("HF_TOKEN")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model_name = "ehristoforu/BigFalcon3-from10B"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,
    trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

#peft_model = AutoPeftModelForCausalLM.from_pretrained("ehristoforu/think-lora-qwen-r64")
#merged_model = peft_model.merge_and_unload()
#merged_model.save_pretrained("./coolqwen")
#model.save_pretrained("./coolqwen")
#tokenizer.save_pretrained("./coolqwen")
'''
from huggingface_hub import HfApi

api = HfApi()



api.upload_folder(
    folder_path="./coolqwen",
    repo_id="ehristoforu/Falcon3-with-lora-think-7b-it",
    repo_type="model",
    token=HF_TOKEN,
)
'''

@spaces.GPU(duration=60)
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    for user, assistant in chat_history:
        conversation.extend(
            [
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant},
            ]
        )
    conversation.append({"role": "user", "content": message})

    formatted = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(formatted, return_tensors="pt", padding=True)
    #if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
    #    input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
    #    gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    inputs = inputs.to(model.device)
    attention_mask = inputs["attention_mask"]
    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": inputs["input_ids"]},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        #eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.eos_token_id,
        attention_mask=attention_mask,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.0,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Hello there! How are you doing?"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["How many hours does it take a man to eat a Helicopter?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ],
    cache_examples=False,
)

with gr.Blocks(css="style.css", fill_height=True) as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()