File size: 9,480 Bytes
fda81d5 18caf87 91881c1 9ff560f 91881c1 9ff560f 91881c1 79f724c 9d8f95d 049a965 91881c1 18caf87 7875a05 18caf87 7875a05 18caf87 7875a05 82159c1 91881c1 18caf87 7875a05 82159c1 91881c1 82159c1 91881c1 82159c1 91881c1 049a965 91881c1 18caf87 91881c1 18caf87 91881c1 9709389 91881c1 9ff560f 91881c1 9ff560f 91881c1 9ff560f 91881c1 af1e395 91881c1 01a348e 91881c1 9ff560f 91881c1 9ff560f 91881c1 9ff560f af1e395 b0a71d9 c9e8660 94f3992 42731a8 94f3992 dad7666 94f3992 42731a8 94f3992 42731a8 94f3992 42731a8 94f3992 42731a8 94f3992 dad7666 42731a8 dad7666 42731a8 d56ab10 dad7666 9d8f95d 42731a8 dad7666 c55174e 91881c1 dad7666 898b6df 91881c1 dad7666 91881c1 c1e08be dad7666 f89471a c1e08be dad7666 e9bbcf4 dad7666 e9bbcf4 f89471a c1e08be dad7666 c1e08be c55174e dad7666 c1e08be dad7666 c1e08be 91881c1 89d3d65 e9bbcf4 89d3d65 20a1029 dad7666 c1e08be d11c1c2 c1e08be dad7666 ade1d21 c1e08be 91881c1 dad7666 9d8f95d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
import os
import time
# Load models and tokenizers
sentiment_tokenizer = AutoTokenizer.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sentiment-Analysis-Customer-Reviews")
sarcasm_tokenizer = AutoTokenizer.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews")
sarcasm_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Sarcasm-Detection-Customer-Reviews")
doc_tokenizer = AutoTokenizer.from_pretrained("dnzblgn/Customer-Reviews-Classification")
doc_model = AutoModelForSequenceClassification.from_pretrained("dnzblgn/Customer-Reviews-Classification")
label_mapping = {
"shipping_and_delivery": 0,
"customer_service": 1,
"price_and_value": 2,
"quality_and_performance": 3,
"use_and_design": 4,
"other": 5
}
reverse_label_mapping = {v: k for k, v in label_mapping.items()}
def analyze_reviews(reviews):
analysis = {
"overall": {"positive": 0, "negative": 0},
"categories": {label: {"positive": 0, "negative": 0} for label in label_mapping.keys()}
}
for review in reviews:
sentiment_inputs = sentiment_tokenizer(review, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
sentiment_outputs = sentiment_model(**sentiment_inputs)
sentiment_class = torch.argmax(sentiment_outputs.logits, dim=-1).item()
sentiment = "positive" if sentiment_class == 0 else "negative"
if sentiment == "positive":
sarcasm_inputs = sarcasm_tokenizer(review, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
sarcasm_outputs = sarcasm_model(**sarcasm_inputs)
sarcasm_class = torch.argmax(sarcasm_outputs.logits, dim=-1).item()
if sarcasm_class == 1:
sentiment = "negative"
doc_inputs = doc_tokenizer(review, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
doc_outputs = doc_model(**doc_inputs)
category_class = torch.argmax(doc_outputs.logits, dim=-1).item()
category = reverse_label_mapping[category_class]
analysis["overall"][sentiment] += 1
analysis["categories"][category][sentiment] += 1
return analysis
def generate_analysis_document(analysis):
total_reviews = analysis["overall"]["positive"] + analysis["overall"]["negative"]
overall_positive = analysis["overall"]["positive"]
overall_negative = analysis["overall"]["negative"]
doc = [
f"Overall Sentiment Analysis:",
f"Positive Feedback: {overall_positive} comments ({(overall_positive / total_reviews) * 100:.0f}%)",
f"Negative Feedback: {overall_negative} comments ({(overall_negative / total_reviews) * 100:.0f}%)",
"--END--",
"Category-Specific Analysis:",
"--END--"
]
for category, feedback in analysis["categories"].items():
total_category = feedback["positive"] + feedback["negative"]
positive_rate = (feedback["positive"] / total_category) * 100 if total_category > 0 else 0
negative_rate = (feedback["negative"] / total_category) * 100 if total_category > 0 else 0
doc.extend([
f"{category.capitalize()}:",
f"- Positive Feedback: {feedback['positive']} comments ({positive_rate:.0f}%)",
f"- Negative Feedback: {feedback['negative']} comments ({negative_rate:.0f}%)",
"--END--"
])
return "\n".join(doc)
def write_analysis_to_file(analysis_document):
with open("processed_analysis.txt", "w") as f:
f.write(analysis_document)
return "processed_analysis.txt"
def read_processed_file():
with open("processed_analysis.txt", "r") as f:
return f.read()
def create_db_from_analysis(analysis_document):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024, chunk_overlap=64
)
splits = text_splitter.create_documents([analysis_document])
embeddings = HuggingFaceEmbeddings()
vector_db = FAISS.from_documents(splits, embeddings)
return vector_db
def initialize_chatbot(vector_db):
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
retriever = vector_db.as_retriever()
llm = HuggingFaceEndpoint(
repo_id="mistralai/Mistral-7B-Instruct-v0.2",
huggingfacehub_api_token = os.environ.get("HUGGINGFACE_API_TOKEN"),
temperature=0.5,
max_new_tokens=256
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory,
verbose=False
)
return qa_chain
def process_and_initialize(file):
if file is None:
return None, None, "Please upload a file first."
try:
if not os.path.exists(file):
return None, None, "File not found. Please try uploading again."
with open(file, 'r', encoding='utf-8') as f:
reviews = [line.strip() for line in f if line.strip()]
if not reviews:
return None, None, "File is empty. Please upload a file with reviews."
analysis = analyze_reviews(reviews)
analysis_doc = generate_analysis_document(analysis)
processed_file = write_analysis_to_file(analysis_doc)
processed_content = read_processed_file()
db = create_db_from_analysis(processed_content)
qa = initialize_chatbot(db)
return db, qa, f"Successfully processed {len(reviews)} reviews! Ready for questions."
except Exception as e:
return None, None, f"Processing error: {str(e)}"
def user_query_typing_effect(query, qa_chain, chatbot):
history = chatbot or []
try:
response = qa_chain.invoke({"question": query, "chat_history": []})
assistant_response = response["answer"]
history.append({"role": "user", "content": query})
history.append({"role": "assistant", "content": ""})
for i in range(len(assistant_response)):
history[-1]["content"] += assistant_response[i]
yield history, ""
time.sleep(0.05) # Slower typing effect
except Exception as e:
history.append({"role": "assistant", "content": f"Error: {str(e)}"})
yield history, ""
def demo():
custom_css = """
body {
background-color: #FF8C00;
font-family: Arial, sans-serif;
}
.gradio-container {
border-radius: 15px;
box-shadow: 0px 4px 20px rgba(0, 0, 0, 0.3);
padding: 20px;
}
footer {
visibility: hidden;
}
.chatbot {
border: 2px solid #000;
border-radius: 10px;
background-color: #FFF5E1;
}
"""
with gr.Blocks(css=custom_css) as app:
vector_db = gr.State(None)
qa_chain = gr.State(None)
gr.Markdown("### π **Customer Review Analysis and Chatbot** π")
gr.Markdown("#### Upload your review file and ask questions interactively!")
with gr.Row():
with gr.Column(scale=1):
txt_file = gr.File(
label="π Upload Reviews",
file_types=[".txt"],
type="filepath"
)
analyze_btn = gr.Button("π Process Reviews")
status = gr.Textbox(
label="π Status",
placeholder="Status updates will appear here...",
interactive=False
)
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="π€ Chat with your data",
height=600,
bubble_full_width=False,
show_label=False,
render_markdown=True,
type="messages",
elem_classes=["chatbot"]
)
query_input = gr.Textbox(
label="Ask a question",
placeholder="Ask about the reviews...",
show_label=False,
container=False
)
query_btn = gr.Button("Ask")
analyze_btn.click(
fn=process_and_initialize,
inputs=[txt_file],
outputs=[vector_db, qa_chain, status],
show_progress="minimal"
)
query_btn.click(
fn=user_query_typing_effect,
inputs=[query_input, qa_chain, chatbot],
outputs=[chatbot, query_input],
show_progress="minimal"
)
query_input.submit(
fn=user_query_typing_effect,
inputs=[query_input, qa_chain, chatbot],
outputs=[chatbot, query_input],
show_progress="minimal"
)
app.launch()
if __name__ == "__main__":
demo()
|