datasith commited on
Commit
3a24180
·
1 Parent(s): 48d86d7

changes to try and fix the classification error

Browse files
Files changed (2) hide show
  1. app.py +14 -11
  2. model_test.h5 +0 -3
app.py CHANGED
@@ -4,12 +4,12 @@
4
  import gradio as gr
5
  import numpy as np
6
  import os
7
- from tensorflow.keras.models import load_model
8
 
9
  ### -------------------------------- ###
10
  ### model loading ###
11
  ### -------------------------------- ###
12
- model = load_model('model.h5') # single file model from colab
13
 
14
  ## --------------------------------- ###
15
  ### reading: categories.txt ###
@@ -73,17 +73,20 @@ The space was inspired by @Isabel's wonderful [cat or pug](https://huggingface.c
73
  samples = ['defective.jpeg', 'okay.jpeg']
74
 
75
  def preprocess(image):
76
- image = np.array(image) / 255
77
- image = np.expand_dims(image, axis=0)
78
- return image
 
 
 
79
 
80
  def predict_image(image):
81
- pred = model.predict(preprocess(image))
82
- results = {}
83
- for row in pred:
84
- for idx, item in enumerate(row):
85
- results[labels[idx]] = float(item)
86
- return results
87
 
88
  # generate img input and text label output
89
  image = gr.inputs.Image(shape=(300, 300), label="Upload Your Image Here")
 
4
  import gradio as gr
5
  import numpy as np
6
  import os
7
+ import tensorflow as tf
8
 
9
  ### -------------------------------- ###
10
  ### model loading ###
11
  ### -------------------------------- ###
12
+ model = tf.keras.models.load_model('model.h5')
13
 
14
  ## --------------------------------- ###
15
  ### reading: categories.txt ###
 
73
  samples = ['defective.jpeg', 'okay.jpeg']
74
 
75
  def preprocess(image):
76
+ img_grayscale = image[:,:,1]
77
+ img_array = tf.keras.utils.img_to_array(img_grayscale)
78
+ img_array = tf.expand_dims(img_array, 0)
79
+ # image = np.array(image) / 255
80
+ # image = np.expand_dims(image, axis=0)
81
+ return img_array
82
 
83
  def predict_image(image):
84
+ pred = model.predict(preprocess(image))
85
+ results = {}
86
+ for row in pred:
87
+ for idx, item in enumerate(row):
88
+ results[labels[idx]] = float(item)
89
+ return results
90
 
91
  # generate img input and text label output
92
  image = gr.inputs.Image(shape=(300, 300), label="Upload Your Image Here")
model_test.h5 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:21c73dae526f60eedb1ee9645e0575917b3c86345324ca9018d8128c442e3ce0
3
- size 221962152