from unsloth import FastLanguageModel import torch import gradio as gr max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. # 4bit pre quantized models we support for 4x faster downloading + no OOMs. fourbit_models = [ "unsloth/mistral-7b-v0.3-bnb-4bit", # New Mistral v3 2x faster! "unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "unsloth/llama-3-8b-bnb-4bit", # Llama-3 15 trillion tokens model 2x faster! "unsloth/llama-3-8b-Instruct-bnb-4bit", "unsloth/llama-3-70b-bnb-4bit", "unsloth/Phi-3-mini-4k-instruct", # Phi-3 2x faster! "unsloth/Phi-3-medium-4k-instruct", "unsloth/mistral-7b-bnb-4bit", "unsloth/gemma-7b-bnb-4bit", # Gemma 2.2x faster! ] # More models at https://huggingface.co./unsloth model = FastLanguageModel(device="cpu") model, tokenizer = FastLanguageModel.from_pretrained( model_name = "danishmuhammad/ccat2025_llama_gguf", max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf ) FastLanguageModel.for_inference(model) alpaca_prompt = """Below is an input that describes a question, answer the following question as clearly as possible. If additional context is needed, provide it briefly. ### Input: {} ### Response: {}""" with gr.Blocks() as demo: chatbot = gr.Chatbot(layout="bubble") user_input = gr.Textbox() clear = gr.ClearButton([user_input, chatbot]) def answers_chat(user_input,history): history = history or [] formatted_input = alpaca_prompt.format(user_input, "") inputs = tokenizer([formatted_input], return_tensors="pt").to(model.device)["input_ids"] # Generate response with adjusted parameters outputs = model.generate( **inputs, max_new_tokens=512, # Increase to allow for longer responses temperature=0.4, # Add temperature to introduce variation repetition_penalty=1.2, # Penalize repeating tokens no_repeat_ngram_size=3, # Avoid repeating sequences of 3 tokens use_cache=True, eos_token_id=tokenizer.eos_token_id ) response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] formatted_response = response[len(formatted_input):].strip() history.append((user_input,formatted_response)) return "",history user_input.submit(answers_chat, [user_input, chatbot], [user_input, chatbot]) demo.launch()